Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Santhanam, Rahul (Ed.)Depth-3 circuit lower bounds and k-SAT algorithms are intimately related; the state-of-the-art Σ^k_3-circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM'05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: - Depth-3 circuits: Any Σ^k_3 circuit computing the Majority function has size at least binom(n,n/2)/b(n, k, n/2). - k-SAT: There exists an algorithm solving k-SAT in time O(∑_{t=1}^{n/2}b(n, k, t)). A simple construction shows that b(n, k, n/2) ≥ 2^{(1 - O(log(k)/k))n}. Thus, matching upper bounds for b(n, k, n/2) would imply a Σ^k_3-circuit lower bound of 2^Ω(log(k)n/k) and a k-SAT upper bound of 2^{(1 - Ω(log(k)/k))n}. The former yields an unrestricted depth-3 lower bound of 2^ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n/2). We show that the expected running time of our algorithm is 1.598ⁿ, substantially improving on the trivial bound of 3^{n/2} ≃ 1.732ⁿ. This already improves Σ^3_3 lower bounds for Majority function to 1.251ⁿ. The previous bound was 1.154ⁿ which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.'95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.more » « lessFree, publicly-accessible full text available January 1, 2025
-
Ta-Shma, Amnon (Ed.)For every prime p > 0, every n > 0 and κ = O(log n), we show the existence of an unsatisfiable system of polynomial equations over O(n log n) variables of degree O(log n) such that any Polynomial Calculus refutation over 𝔽_p with M extension variables, each depending on at most κ original variables requires size exp(Ω(n²)/10^κ(M + n log n))more » « less
-
Tauman_Kalai, Yael (Ed.)Connections between proof complexity and circuit complexity have become major tools for obtaining lower bounds in both areas. These connections - which take the form of interpolation theorems and query-to-communication lifting theorems - translate efficient proofs into small circuits, and vice versa, allowing tools from one area to be applied to the other. Recently, the theory of TFNP has emerged as a unifying framework underlying these connections. For many of the proof systems which admit such a connection there is a TFNP problem which characterizes it: the class of problems which are reducible to this TFNP problem via query-efficient reductions is equivalent to the tautologies that can be efficiently proven in the system. Through this, proof complexity has become a major tool for proving separations in black-box TFNP. Similarly, for certain monotone circuit models, the class of functions that it can compute efficiently is equivalent to what can be reduced to a certain TFNP problem in a communication-efficient manner. When a TFNP problem has both a proof and circuit characterization, one can prove an interpolation theorem. Conversely, many lifting theorems can be viewed as relating the communication and query reductions to TFNP problems. This is exciting, as it suggests that TFNP provides a roadmap for the development of further interpolation theorems and lifting theorems. In this paper we begin to develop a more systematic understanding of when these connections to TFNP occur. We give exact conditions under which a proof system or circuit model admits a characterization by a TFNP problem. We show: - Every well-behaved proof system which can prove its own soundness (a reflection principle) is characterized by a TFNP problem. Conversely, every TFNP problem gives rise to a well-behaved proof system which proves its own soundness. - Every well-behaved monotone circuit model which admits a universal family of functions is characterized by a TFNP problem. Conversely, every TFNP problem gives rise to a well-behaved monotone circuit model with a universal problem. As an example, we provide a TFNP characterization of the Polynomial Calculus, answering a question from [Mika Göös et al., 2022], and show that it can prove its own soundness.more » « less