Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the loss landscape of both shallow and deep, mildly overparameterized ReLU neural networks on a generic finite input dataset for the squared error loss. We show both by count and volume that most activation patterns correspond to parameter regions with no bad local minima. Furthermore, for one-dimensional input data, we show most activation regions realizable by the network contain a high dimensional set of global minima and no bad local minima. We experimentally confirm these results by finding a phase transition from most regions having full rank Jacobian to many regions having deficient rank depending on the amount of overparameterization.more » « lessFree, publicly-accessible full text available June 4, 2025
-
We study the geometry of linear networks with one-dimensional convolutional layers. The function spaces of these networks can be identified with semialgebraic families of polynomials admitting sparse factorizations. We analyze the impact of the network’s architecture on the function space’s dimension, boundary, and singular points. We also describe the critical points of the network’s parameterization map. Furthermore, we study the optimization problem of training a network with the squared error loss. We prove that for architectures where all strides are larger than one and generic data, the nonzero critical points of that optimization problem are smooth interior points of the function space. This property is known to be false for dense linear networks and linear convolutional networks with stride one.more » « lessFree, publicly-accessible full text available January 24, 2025
-
Krause, Andreas ; Brunskill, Emma ; Cho, Kyunghyun ; Engelhardt, Barbara ; Sabato, Sivan ; Scarlett, Jonathan (Ed.)We consider a deep matrix factorization model of covariance matrices trained with the Bures-Wasserstein distance. While recent works have made advances in the study of the optimization problem for overparametrized low-rank matrix approximation, much emphasis has been placed on discriminative settings and the square loss. In contrast, our model considers another type of loss and connects with the generative setting. We characterize the critical points and minimizers of the Bures-Wasserstein distance over the space of rank-bounded matrices. The Hessian of this loss at low-rank matrices can theoretically blow up, which creates challenges to analyze convergence of gradient optimization methods. We establish convergence results for gradient flow using a smooth perturbative version of the loss as well as convergence results for finite step size gradient descent under certain assumptions on the initial weights.more » « less