skip to main content


Search for: All records

Award ID contains: 2212830

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability tocontinuouslytune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3-δ(LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (withδ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (withδ= 0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport equation, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications.

     
    more » « less
  2. In this Letter, we report that the fourth-order interatomic force constants (4th-IFCs) are significantly sensitive to the energy surface roughness of exchange-correlation (XC) functionals in density functional theory calculations. This sensitivity, which is insignificant for the second- (2nd-) and third-order (3rd-) IFCs, varies for different functionals in different materials and can cause misprediction of thermal conductivity by several times of magnitude. As a result, when calculating the 4th-IFCs using the finite difference method, the atomic displacement needs to be taken large enough to overcome the energy surface roughness, in order to accurately predict phonon lifetime and thermal conductivity. We demonstrate this phenomenon on a benchmark material (Si), a high-thermal conductivity material (BAs), and a low thermal conductivity material (NaCl). For Si, we find that the LDA, PBE, and PBEsol XC functionals are all smooth to the 2nd- and 3rd-IFCs but all rough to the 4th-IFCs. This roughness can lead to a prediction of nearly one order of magnitude lower thermal conductivity. For BAs, all three functionals are smooth to the 2nd- and 3rd-IFCs, and only the PBEsol XC functional is rough for the 4th-IFCs, which leads to a 40% underestimation of thermal conductivity. For NaCl, all functionals are smooth to the 2nd- and 3rd-IFCs but rough to the 4th-IFCs, leading to a 70% underprediction of thermal conductivity at room temperature. With these observations, we provide general guidance on the calculation of 4th-IFCs for an accurate thermal conductivity prediction.

     
    more » « less
    Free, publicly-accessible full text available November 6, 2024
  3. Silicon nitride (Si3N4) is a promising substrate for high-power electronics due to its superior mechanical properties and potential outstanding thermal conductivity (κ). As experiments keep pushing the upper limit of κ of Si3N4, it is believed that it can reach 450 W/mK, similar to SiC, based on classical models and molecular dynamics simulations. In this work, we reveal from first principles that the theoretical κ upper limits of β-Si3N4 are only 169 and 57 W/mK along the c and a axes at room temperature, respectively. Those of α-Si3N4 are about 116 and 87 W/mK, respectively. The predicted temperature-dependent κ matches well with the highest available experimental data, which supports the accuracy of our calculations, and suggests that the κ upper limit of Si3N4 has already been reached in the experiment. Compared to other promising semiconductors (e.g., SiC, AlN, and GaN), Si3N4 has a much lower κ than expected even though the chemical bonding and mechanical strengths are close or even stronger. We find the underlying reason is that Si3N4 has much lower phonon lifetimes and mean free paths (<0.5 μm) due to the larger three-phonon scattering phase space and stronger anharmonicity. Interestingly, we find that the larger unit cell (with more basis atoms) that leads to a smaller fraction of acoustic phonons is not the reason for lower κ. Grain size-dependent κ indicates that the grain boundary scattering plays a negligible role in most experimental samples. This work clarifies the theoretical κ upper limits of Si3N4 and can guide experimental research.

     
    more » « less
  4. Abstract High thermal conductivity electronic materials are critical components for high-performance electronic and photonic devices as both active functional materials and thermal management materials. We report an isotropic high thermal conductivity exceeding 500 W m −1 K −1 at room temperature in high-quality wafer-scale cubic silicon carbide (3C-SiC) crystals, which is the second highest among large crystals (only surpassed by diamond). Furthermore, the corresponding 3C-SiC thin films are found to have record-high in-plane and cross-plane thermal conductivity, even higher than diamond thin films with equivalent thicknesses. Our results resolve a long-standing puzzle that the literature values of thermal conductivity for 3C-SiC are lower than the structurally more complex 6H-SiC. We show that the observed high thermal conductivity in this work arises from the high purity and high crystal quality of 3C-SiC crystals which avoids the exceptionally strong defect-phonon scatterings. Moreover, 3C-SiC is a SiC polytype which can be epitaxially grown on Si. We show that the measured 3C-SiC-Si thermal boundary conductance is among the highest for semiconductor interfaces. These findings provide insights for fundamental phonon transport mechanisms, and suggest that 3C-SiC is an excellent wide-bandgap semiconductor for applications of next-generation power electronics as both active components and substrates. 
    more » « less