skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2213363

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article studies two particular algorithms, a relaxation least squares algorithm and a relaxation Newton iteration scheme, for reconstructing unknown parameters in dissipative dynamical systems. Both algorithms are based on a continuous data assimilation (CDA) algorithm for state reconstruction of Azouaniet al(2014J. Nonlinear Sci.24277–304). Due to the CDA origins of these parameter recovery algorithms, these schemes provide on-the-fly reconstruction, that is, as data is collected, of unknown state and parameters simultaneously. It is shown how both algorithms give way to a robust general framework for simultaneous state and parameter estimation. In particular, we develop a general theory, applicable to a large class of dissipative dynamical systems, which identifies structural and algorithmic conditions under which the proposed algorithms achieve reconstruction of the true parameters. The algorithms are implemented on a high-dimensional two-layer Lorenz 96 model, where the theoretical conditions of the general framework are explicitly verifiable. They are also implemented on the two-dimensional Rayleigh–Bénard convection system to demonstrate the applicability of the algorithms beyond the finite-dimensional setting. In each case, systematic numerical experiments are carried out probing the efficacy of the proposed algorithms, in addition to the apparent benefits and drawbacks between them. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. This article is concerned with the problem of determining an unknown source of non-potential, external time-dependent perturbations of an incompressible fluid from large-scale observations on the flow field. A relaxation-based approach is proposed for accomplishing this, which makes use of a nonlinear property of the equations of motions to asymptotically enslave small scales to large scales. In particular, an algorithm is introduced that systematically produces approximations of the flow field on the unobserved scales in order to generate an approximation to the unknown force; the process is then repeated to generate an improved approximation of the unobserved scales, and so on. A mathematical proof of convergence of this algorithm is established in the context of the two-dimensional Navier–Stokes equations with periodic boundary conditions under the assumption that the force belongs to the observational subspace of phase space; at each stage in the algorithm, it is shown that the model error, represented as the difference between the approximating and true force, asymptotically decreases to zero in a geometric fashion provided that sufficiently many scales are observed and certain parameters of the algorithm are appropriately tuned. 
    more » « less