Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT Climate extremes—e.g., drought, atmospheric rivers, heat waves—are increasing in severity and frequency across the western United States of America (USA). Tree‐ring widths reflect the concurrent and legacy effects of such climate extremes, yet our ability to predict extreme tree growth is often poor. Could tree‐ring data themselves identify the most important climate variables driving extreme low‐ and high‐growth states? How does the importance of these climate drivers differ across species and time? To address these questions, we explored the spatial synchrony of extreme low‐ and high‐growth years, the symmetry of climate effects on the probability of low‐ and high‐growth years, and how climate drivers of extreme growth vary across tree species. We compiled ring widths for seven species (four gymnosperms and three angiosperms) from 604 sites in the western USA and classified each annual ring as representing extreme low, extreme high, or nominal growth. We used classification random forest (RF) models to evaluate the importance of 30 seasonal climate variables for predicting extreme growth, including precipitation, temperature, and vapor pressure deficit (VPD) during and up to four years prior to ring formation. For four species (three gymnosperms, one angiosperm) for which climate was predictive of growth, the RF models correctly classified 89%–98% and 80%–95% of low‐ and high‐growth years, respectively. For these species, asymmetric climate responses dominated. Current‐year winter hydroclimate (precipitation and VPD) was most important for predicting low growth, but prediction of high growth required multiple years of favorable moisture conditions, and the occurrence of low‐growth years was more synchronous across space than high‐growth years. Summer climate and temperature (regardless of season) were only weakly predictive of growth extremes. Our results motivate ecologically relevant definitions of drought such that current winter moisture stress exerts a dominant role in governing growth reductions in multiple tree species broadly distributed across the western USA.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Summary Wood formation is the Rosetta stone of tree physiology: a traceable, integrated record of physiological and morphological status. It also produces a large and persistent annual sink for terrestrial carbon, motivating predictive understanding. Xylogenesis studies have greatly expanded our knowledge of the intra‐annual controls on wood formation, while dendroecology has quantified the environmental drivers of multi‐annual variability. But these fields operate on different timescales, making it challenging to predict how short (e.g. turgor) and long timescale processes (e.g. disturbance) interactively influence wood formation. Toward this challenge, wood growth responses to natural climate events provide useful but incomplete explanations of tree growth variability. By contrast, direct manipulations of the tree vascular system have yielded unexpected insights, particularly outside of model species like boreal conifers, but they remain underutilized. To improve prediction of global wood formation, we argue for a new generation of experimental manipulations of wood growth across seasons, species, and ecosystems. Such manipulations should expand inference to diverse forests and capture inter‐ and intra‐specific differences in wood growth. We summarize the endogenous and exogenous factors influencing wood formation to guide future experimental design and hypotheses. We highlight key opportunities for manipulative studies integrating measurements from xylogenesis, dendroanatomy, dendroecology, and ecophysiology.more » « less
- 
            Decades‐old carbon reserves are widespread among tree species, constrained only by sapwood longevitySummary Carbon reserves are distributed throughout plant cells allowing past photosynthesis to fuel current metabolism. In trees, comparing the radiocarbon (Δ14C) of reserves to the atmospheric bomb spike can trace reserve ages.We synthesized Δ14C observations of stem reserves in nine tree species, fitting a new process model of reserve building. We asked how the distribution, mixing, and turnover of reserves vary across trees and species. We also explored how stress (drought and aridity) and disturbance (fire and bark beetles) perturb reserves.Given sufficient sapwood, young (< 1 yr) and old (20–60+ yr) reserves were simultaneously present in single trees, including ‘prebomb’ reserves in two conifers. The process model suggested that most reserves are deeply mixed (30.2 ± 21.7 rings) and then respired (2.7 ± 3.5‐yr turnover time). Disturbance strongly increased Δ14C mean ages of reserves (+15–35 yr), while drought and aridity effects on mixing and turnover were species‐dependent. Fire recovery inSequoia sempervirensalso appears to involve previously unobserved outward mixing of old reserves.Deep mixing and rapid turnover indicate most photosynthate is rapidly metabolized. Yet ecological variation in reserve ages is enormous, perhaps driven by stress and disturbance. Across species, maximum reserve ages appear primarily constrained by sapwood longevity, and thus old reserves are probably widespread.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
