skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2213694

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pavement surface distresses are analyzed by transportation agencies to determine section performance across their pavement networks. To efficiently collect and evaluate thousands of lane-miles, automated processes utilizing image-capturing techniques and detection algorithms are applied to perform these tasks. However, the precision of this novel technology often leads to inaccuracies that must be verified by pavement engineers. Developments in artificial intelligence and machine learning (AI/ML) can aid in the progress of more robust and precise detection algorithms. Deep learning models are efficient for visual distress identification of pavement. With the use of 2D/3D pavement images, surface distress analysis can help train models to efficiently detect and classify surface distresses that may be caused by traffic loading, weather, aging, and other environmental factors. The formation of these distresses is developing at a higher rate in coastal regions, where extreme weather phenomena are more frequent and intensive. This study aims to develop a YOLOv5 model with 2D/3D images collected in the states of Louisiana, Mississippi, and Texas in the U.S. to establish a library of data on pavement sections near the Gulf of Mexico. Images with a resolution of 4096 × 2048 are annotated by utilizing bounding boxes based on a class list of nine distress and non-distress objects. Along with emphasis on efforts to detect cracks in the presence of background noise on asphalt pavements, six scenarios for augmentation were made to evaluate the model’s performance based on flip probability in the horizontal and vertical directions. The YOLOv5 models are able to detect defined distresses consistently, with the highest mAP50 scores ranging from 0.437 to 0.462 throughout the training scenarios. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026