Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent years, there has been a growing consensus among researchers regarding the dual nature of code clones. While some instances of code are valuable for reuse or extraction as components, the utilization of specific code segments can pose significant maintenance challenges for developers. Consequently, the judicious management of code clones has emerged as a pivotal solution to address these issues. Nevertheless, it remains critical to ascertain the number of code clones within a project, and identify components where code clones are more concentrated. In this paper, we introduce three novel metrics, namely Clone Distribution, Clone Density, and Clone Entropy (the dispersion of code clone within a project), for the quantification and characterization of code clones. We have formulated associated mathematical expressions to precisely represent these code clone metrics. We collected a dataset covering three different domains of Java projects, formulated research questions for the proposed three metrics, conducted a large-scale empirical study, and provided detailed numerical statistics. Furthermore, we have introduced a novel clone visualization approach, which effectively portrays Clone Distribution and Clone Density. Developers can leverage this approach to efficiently identify target clones. By reviewing clone code concerning its distribution, we have identified nine distinct code clone patterns and summarized specific clone management strategies that have the potential to enhance the efficiency of clone management practices. Our experiments demonstrate that the proposed code clone metrics provide valuable insights into the nature of code clones, and the visualization approach assists developers in inspecting and summarizing clone code patterns.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract—Intuitively, the more complex a software system is, the harder it is to maintain. Statistically, it is not clear which complexity metrics correlate with maintenance effort; in fact, it is not even clear how to objectively measure maintenance burden, so that developers’ sentiment and intuition can be supported by numbers. Without effective complexity and maintenance metrics, it remains difficult to objectively monitor maintenance, control complexity, or justify refactoring. In this paper, we report a large-scale study of 1252 projects written in C++ and Java from Google LLC. We collected three categories of metrics: (1) architectural complexity, measured using propagation cost (PC), decoupling level (DL), and structural anti-patterns; (2) maintenance activity, measured using the number of changes, lines of code (LOC) written, and active coding time (ACT) spent on feature-addition vs. bug-fixing, and (3) developer sentiment on complexity and productivity, collected from 7200 survey responses. We statistically analyzed the correlations among these metrics and obtained significant evidence of the following findings: 1) the more complex the architecture is (higher propagation cost, more instances of anti-patterns), the more LOC is spent on bug-fixing, rather than adding new features; 2) developers who commit more changes for features, spend more lines of code on features, or spend more time on features also feel that they are less hindered by technical debt and complexity. To the best of our knowledge, this is the first large-scale empirical study establishing the statistical correlation among architectural complexity, maintenance activity, and developer sentiment. The implication is that, instead of solely relying upon developer sentiment and intuition to detect degraded structure or increased burden to evolve, it is possible to objectively and continuously measure and monitor architectural complexity and maintenance difficulty, increasing feature delivery efficiency by reducing architectural complexity and anti-patterns.more » « lessFree, publicly-accessible full text available April 28, 2026
-
Background: Understanding dependencies within microservices is essential for maintaining and evolving scalable and efficient software architectures. Dependencies influence how changes in one microservice might propagate to other microservices. With the decentralized nature of microservices, these dependencies might not be explicit to developers and lead to unique challenges in modern software development environments. Objective: The objective of this study is to synthesize existing literature on microservice dependencies, identify the types of dependencies, and examine the strategies employed to manage and analyze these relationships. This effort aims to elucidate how dependencies affect microservice systems and to provide a comprehensive overview of dependency management within microservices. Method: We conducted a multivocal literature review, starting with an initial dataset of 1,733 papers from academic literature (white literature). This corpus was narrowed down through a rigorous filtering process to 45 key publications that address the identification, management, and impacts of dependencies in microservices. Additionally, we incorporated 926 articles from grey literature sources such as Google, Stack Overflow, and Stack Exchange, expanding the scope beyond traditional academic research. After the filtration process, 45 articles were fully synthesized to integrate practical insights and professional experiences into our review. Results: The review identifies several types of dependencies in microservice systems and synthesizes this information into a unified dependency taxonomy. This review highlights a range of approaches to dependency management, revealing a significant gap in systematic catering approaches to generate taxonomies for dependencies and the need for integrated management tools. The findings underscore the fragmented nature of existing dependency management practices and the potential for more holistic approaches. Conclusion: This study provides valuable insights for researchers and practitioners, outlining effective strategies and pointing out areas needing improvement in dependency management. By offering a structured overview of the topic, the study serves as a roadmap for future research and development efforts to enhance the robustness and maintainability of microservices.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Microservice architecture design requires the architect to meet the needs of multiple stakeholders and to address their needs for maintainability, scalability, and availability. In the microservice architecture context, a comprehensive performance and scalability assessment is a dynamic activity, which is focused on the detection of service level metric deviations from objectives using a defined operational profile. Root cause analysis is focused on the identification of the activated microservice components given the defined load profile. Therefore, performance issues are identified by detecting dynamic deviations from the expected behaviors of the service level metric.In contrast, microservice architecture assessment focus is on identifying implicit relations among microservice components. Architecture anti-patterns are identified by detecting deviations from the defined formal design patterns. As the ultimate objective of microservice architecture design is to build high-quality applications it would be expected that architecture refactoring based on the removal of architecture anti-patterns will result in meeting stakeholder needs of better scalability and availability.In this paper we present an empirical assessment of architecture anti-pattern detection in combination with the identification of performance issues using two state of the art tools: DV8 for architecture and PPTAM for performance. We make use of Train Ticket, i.e., a benchmark microservice system, and we observed the co-occurrence of architectural (Clique) and performance (Blob) anti-patterns, noting that high coupling shows much worse performance scores. We have found strong correlation between the normalized distance performance metric and architecture coupling values using several similarity metrics. Our empirical results show that operational profile based performance testing and analysis can be used to help prioritize architecture refactoring.more » « lessFree, publicly-accessible full text available March 31, 2026
-
Evolutionary design is a widely accepted practice for defining microservice boundaries. It is performed through a sequence of incremental refactoring tasks (we call it “microservice refactoring”), each restructuring only part of a microservice system (a.k.a., refactoring part) into well-defined services for improving the architecture in a controlled manner. Despite its popularity in practice, microservice refactoring suffers from insufficient methodological support. While there are numerous studies addressing similar software design tasks, i.e., software remodularization and microservitization, their approaches prove inadequate when applied to microservice refactoring. Our analysis reveals that their approaches may even degrade the entire architecture in microservice refactoring, as they only optimize the refactoring part in such applications, but neglect the relationships between the refactoring part and the remaining system. As the first response to the need, Micro2Micro is proposed to re-partition the refactoring part while optimizing three quality objectives including the interdependence between the refactoring and non-refactoring parts. In addition, it allows architects to intervene in the decision-making process by interactively incorporating their knowledge into the iterative search for optimal refactoring solutions. An empirical study on 13 open-source projects of different sizes shows that the solutions from Micro2Micro perform well and exhibit quality improvement with an average up to 45% to the original architecture. Users of Micro2Micro found the suggested solutions highly satisfactory. They acknowledge the advantages in terms of infusing human intelligence into decisions, providing immediate quality feedback, and quick exploration capability.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Complex software systems consist of multiple overlapping design structures, such as abstractions, features, crosscutting concerns, or patterns. This is similar to how a human body has multiple interacting subsystems, such as respiratory, digestive, or circulatory. Unlike in the medical domain, software designers do not have an effective way to distinguish, visualize, comprehend, and analyze these interleaving design structures. As a result, developers often struggle through the maze of source code. In this paper, we present an Automated Concept Explanation (ACE) framework that automatically extracts and categorizes major concepts from source code based on the roles that files play in design structures and their topic frequencies. Based on these categorized concepts, ACE recovers four categories of high-level design models using different algorithms and generates a natural language explanation for each. To assess if and how ACE can help developers better understand design structures, we conducted an empirical study where two groups of graduate students were assigned three design comprehension tasks: identifying feature-related files, identifying dependencies among features, and identifying design patterns used, in an open-source project. The results reveal that the students who used ACE can accomplish these tasks much faster and more accurately, and they acknowledged the usefulness of the categorized concepts and structures, multi-type high-level model visualization, and natural language explanations.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Background: Software practitioners need reliable metrics to monitor software evolution, compare projects, and understand modularity variations. This is crucial for assessing architectural improvement or decay. Existing popular metrics offer little help, especially in systems with implicitly connected but seemingly isolated files. Aim: Our objective is to explore why and how state-of-the-art modularity measures fail to serve as effective metrics and to devise a new metric that more accurately captures complexity changes and is less distorted by sizes or isolated files. Methods: We analyzed metric scores for 1,220 releases across 37 projects to identify the root causes of their shortcomings. This led to the creation of M-score, a new software modularity metric that combines the strengths of existing metrics while addressing their flaws. M-score rewards small, independent modules, penalizes increased coupling, and treats isolated modules and files consistently. Results: Our evaluation revealed that M-score outperformed other modularity metrics in terms of stability, particularly with respect to isolated files, because it captures coupling density and module independence. It also correlated well with maintenance effort, as indicated by historical maintainability measures, meaning that the higher the M-score, the more likely maintenance tasks can be accomplished independently and in parallel. Conclusions: Our research identifies the shortcomings of current metrics in accurately depicting software complexity and proposes M-score, a new metric with superior stability and better reflection of complexity and maintenance effort, making it a promising metric for software architectural assessments, comparison, and monitoring.more » « less
-
Context: Design anti-patterns can be symptoms of problems that lead to long-term maintenance difficulty. How should development teams prioritize their treatment? Which ones are more severe and deserve more attention? Does the impact of anti-patterns and general maintenance efforts differ with different programming languages? Objective: In this study, we assess the prevalence and severity of anti-patterns in different programming languages and the impact of dynamic typing in Python, as well as the impact scopes of prevalent anti-patterns that manifest the violation of design principles. Method: We conducted a large-scale study of anti-patterns using 1717 open-source projects written in Java, C/C++, and Python. For the 288 Python projects, we extracted both explicit and dynamic dependencies and compared how the detected anti-patterns and maintenance costs changed. Finally, we removed anti-patterns involving five or fewer files to assess the impact of trivial anti-patterns. Results: The results reveal that 99.55% of these projects contain anti-patterns. Modularity Violation – frequent co-changes among seemingly unrelated files – is most prevalent (detected in 83.54% of all projects) and costly (incurred 61.55% of maintenance effort on average). Unstable Interface and Crossing, caused by influential but unstable files, although not as prevalent, tend to incur severe maintenance costs. Duck typing in Python incurs more anti-patterns, and the churn spent on Python files multiplies that of C/C++ and Java files. Several prevalent anti-patterns have a large portion of trivial instances, meaning that these common symptoms are usually not harmful. Conclusion: Implicit and visible dependencies are the most expensive to maintain, and dynamic typing in Python exacerbates the issue. Influential but unstable files need to be monitored and rectified early to prevent the accumulation of high maintenance costs. The violations of design principles are widespread, but many are not high-maintenance.more » « less
An official website of the United States government
