skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2213790

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionSelf-regulated learning skills are necessary for academic success. While not all students entering post-secondary education are proficient at many of these critical skills, they can be improved upon when practiced. However, self-regulation tends to be highly internal, making it difficult to measure. One form of measurement comes from using data traces collected from educational software. These allow researchers to make strong empirical inferences about a student's internal state. Automatically captured data traces also make it possible to provide automated interventions that help students practice and master self-regulated learning skills. Methods/resultsUsing an experimental methodology we created a set of promising data traces that are grounded in theory to study self-regulated learning within a typical Computer Science course. Extra attention is given to studying the skill of help-seeking, which is both a key to success in CS and requires unobtrusive observation to properly measure. DiscussionWe also make the case for taking a broader perspective with our data collection efforts. The traces identified in this paper are not from one source, but the full ecosystem of software tools common to CS courses. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026