Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Light’sinteraction with objectsurfacesthrough anisotropic reflection– where reflected light varies with viewing angles–offers significant potential for enhancing visual capabilities and assisting informed decision-making. Such ubiquitous light transfer phenomenon supports directional information encoding in sensing and dynamic display applications. We present LumosX, a set of techniques for encoding and decoding information through light intensity changes using 3D-printed optical anisotropic properties. By optimizing directional reflection and brightness contrasts through off-the-shelf materials and precise control over processing parameters (e.g., extrusion volume, raster angles, layer height, nozzle positioning), we enable cost-effective fabrication of visually enhanced objects. Our method supports modular assembly for highly curved regular surfaces and direct printing on top of relatively flat curved surfaces, enabling flexible information encoding for diverse applications. We showcase LumosX’s effectiveness through various indoor and smart urban sensing scenarios, demonstrating significant improvements in both human interaction and autonomous machine perception.more » « lessFree, publicly-accessible full text available April 25, 2026
- 
            The increase of distributed embedded systems has enabled pervasive sensing, actuation, and information displays across buildings and surrounding environments, yet also entreats huge cost expenditure for energy and human labor for maintenance. Our daily interactions, from opening a window to closing a drawer to twisting a doorknob, are great potential sources of energy but are often neglected. Existing commercial devices to harvest energy from these ambient sources are unaffordable, and DIY solutions are left with inaccessibility for non-experts preventing fully imbuing daily innovations in end-users. We present E3D, an end-to-end fabrication toolkit to customize self-powered smart devices at low cost. We contribute to a taxonomy of everyday kinetic activities that are potential sources of energy, a library of parametric mechanisms to harvest energy from manual operations of kinetic objects, and a holistic design system for end-user developers to capture design requirements by demonstrations then customize augmentation devices to harvest energy that meets unique lifestyle.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
