skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2215646

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 4, 2026
  2. Radars are widely adopted for autonomous navigation and vehicular networking due to their robustness to weather conditions as compared to visible light cameras and lidars. However, radars currently struggle with differentiating static vs tangentially moving objects within a single radar frame since both yield the same Doppler along line-of-sight paths to the radar. Prior solutions deploy multiple radar or visible light camera modules to form a multi-“look” synthetic aperture for estimating the single-frame velocity vectors, to estimate tangential and radial velocity components of moving objects leading to higher system costs. In this paper, we propose to exploit multi-bounce scattering from secondary static objects in the environment, e.g., building pillars, walls, etc., to form an effective multi-“look” synthetic aperture for single-frame velocity vector estimation with a single multiple-input, multiple-output (MIMO) radar, thus reducing the overall system cost and removing the need for multi-module synchronization. We present a comprehensive theoretical and experiment evaluation of our scheme, demonstrating a 4.5× reduction in the error for estimating moving objects’ velocity vectors over comparable single-radar baselines. 
    more » « less
    Free, publicly-accessible full text available July 30, 2026
  3. Free, publicly-accessible full text available June 15, 2026
  4. Free, publicly-accessible full text available June 15, 2026
  5. Free, publicly-accessible full text available June 15, 2026