Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 14, 2026
- 
            Free, publicly-accessible full text available April 9, 2026
- 
            The growing interest in sodium-ion batteries (SIBs) is driven by scarcity and the rising costs of lithium, coupled with the urgent need for scalable and sustainable energy storage solutions. Among various cathode materials, layered transition metal oxides have emerged as promising candidates due to their structural similarity to lithium-ion battery (LIB) counterparts and their potential to deliver high energy density at reduced costs. However, significant challenges remain, including limited capacity at high charge/discharge rates and structural instability during extended cycling. Addressing these issues is critical for advancing SIB technology toward industrial applications, particularly for large-scale energy storage systems. This review provides a comprehensive analysis of layered sodium transition metal oxides, focusing on their structural properties, electrochemical performance, and degradation mechanisms. Special attention is given to the intrinsic and extrinsic factors contributing to their instability, such as structural phase transitions, and cationic/anionic redox behavior. Additionally, recent advancements in material design strategies, including doping, surface modifications, and composite formation, are discussed to highlight the progress toward enhancing the stability and performance of these materials. This work aims to bridge the knowledge gaps and inspire further innovations in the development of high-performance cathodes for sodium-ion batteries.more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Mechanical properties are essential for the biological activities of cells, and they have been shown to be affected by diseases. Therefore, accurate mechanical characterization is important for studying the cell lifecycle, cell-cell interactions, and disease diagnosis. While the cytoskeleton and actin cortex are typically the primary structural stiffness contributors in most live cells, oocytes possess an additional extracellular layer known as the vitelline membrane (VM), or envelope, which can significantly impact their overall mechanical properties. In this study, we utilized nanoindentation via an atomic force microscope to measure the Young's modulus of Xenopus laevis oocytes at different force setpoints and explored the influence of the VM by conducting measurements on oocytes with the membrane removed. The findings revealed that the removal of VM led to a significant decrease in the apparent Young's modulus of the oocytes, highlighting the pivotal role of the VM as the main structural component responsible for the oocyte's shape and stiffness. Furthermore, the mechanical behavior of VM was investigated through finite element (FE) simulations of the nanoindentation process. FE simulations with the VM Young's modulus in the range 20–60 MPa resulted in force-displacement curves that closely resemble experimental in terms of shape and maximum force for a given indentation depth.more » « less
- 
            Photocatalytic processes offer promising solutions for environmental remediation and clean energy production, yet their efficiency under the visible light spectrum remains a significant challenge. Here, we report a novel silver–graphene (Ag-G) modified TiO2 (Ag-G-TiO2) nanocomposite photocatalyst that demonstrates remarkably enhanced photocatalytic activity for both dye wastewater degradation and hydrogen production under visible and UV light irradiation. Through comprehensive characterization and performance analysis, we reveal that the Ag-G modification narrows the TiO2 bandgap from 3.12 eV to 1.79 eV, enabling efficient visible light absorption. The nanocomposite achieves a peak hydrogen production rate of 191 μmolesg−1h−1 in deionized (DI) water dye solution under visible light, significantly outperforming unmodified TiO2. Intriguingly, we observe an inverse relationship between dye degradation efficiency and hydrogen production rates in dye solutions with tap water versus DI water, highlighting the critical role of water composition in photocatalytic processes. This work not only advances the understanding of fundamental photocatalytic mechanisms but also presents a promising photocatalyst for solar-driven environmental remediation and clean energy production. The Ag-G-TiO2 nanocomposite’s enhanced performance across both visible and UV spectra, coupled with its dual functionality in dye degradation and hydrogen evolution, represents a significant step towards addressing critical challenges in water treatment and sustainable energy generation. Our findings highlight the complex interplay between light absorption and reaction conditions, offering new insights for optimizing photocatalytic systems. This research paves the way for developing more efficient and versatile photocatalysts, potentially contributing to the global transition towards sustainable technologies and circular economy in waste management and energy production.more » « less
- 
            Ni-rich Li(NixCoyMnz)O2 (x ≥ 0.8)-layered oxide materials are highly promising as cathode materials for high-energy-density lithium-ion batteries in electric and hybrid vehicles. However, their tendency to undergo side reactions with electrolytes and their structural instability during cyclic lithiation/delithiation impairs their electrochemical cycling performance, posing challenges for large-scale applications. This paper explores the application of an Al2O3 coating using an atomic layer deposition (ALD) system on Ni-enriched Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode material. Characterization techniques, including X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, were used to assess the impact of alumina coating on the morphology and crystal structure of NCM811. The results confirmed that an ultrathin Al2O3 coating was achieved without altering the microstructure and lattice structure of NCM811. The alumina-coated NCM811 exhibited improved cycling stability and capacity retention in the voltage range of 2.8–4.5 V at a 1 C rate. Specifically, the capacity retention of the modified NCM811 was 5%, 9.11%, and 11.28% higher than the pristine material at operating voltages of 4.3, 4.4, and 4.5 V, respectively. This enhanced performance is attributed to reduced electrode–electrolyte interaction, leading to fewer side reactions and improved structural stability. Thus, NCM811@Al2O3 with this coating process emerges as a highly attractive candidate for high-capacity lithium-ion battery cathode materials.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
