Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Honey bees are renowned architects. The workers use expensive wax secretions to build their nests, which reach a mature, seemingly steady state, relatively quickly. After nest expansion is complete, workers do not tear down combs completely and begin anew, but there is the possibility they may make subtle changes like adding, removing, and repositioning existing wax. Previous work has focused on nest initiation and nest expansion, but here we focus on mature nests that have reached a steady-state. To investigate subtle changes to comb shape over time, we tracked six colonies from nest initiation through maturity (211 days), photographing their combs every 1–2 weeks. By aligning comb images over time, we show that workers continuously remove wax from the comb edges, thereby reducing total nest area over time. All six colonies trimmed comb edges, and 98.3% of combs were reduced (n = 59). Comb reduction began once workers stopped expanding their nests and continued throughout the experiment. The extent to which a comb was reduced did not correlate with its position within the nest, comb perimeter, or comb area. It is possible that workers use this removed wax as a reserve wax source, though this remains untested. These results show that the superorganism nest is not static; workers are constantly interacting with their nest, and altering it, even after nest expansion is complete.more » « less
-
Form follows function throughout the development of an organism. This principle should apply beyond the organism to the nests they build, but empirical studies are lacking. Honeybees provide a uniquely suited system to study nest form and function throughout development because we can image the three-dimensional structure repeatedly and non-destructively. Here, we tracked nest-wide comb growth in six colonies over 45 days (control colonies) and found that colonies have a stereotypical process of development that maintains a spheroid nest shape. To experimentally test if nest structure is important for colony function, we shuffled the nests of an additional six colonies, weekly rearranging the comb positions and orientations (shuffled colonies). Surprisingly, we found no differences between control and shuffled colonies in multiple colony performance metrics—worker population, comb area, hive weight and nest temperature. However, using predictive modelling to examine how workers allocate comb to expand their nests, we show that shuffled colonies compensate for these disruptions by accounting for the three-dimensional structure to reconnect their nest. This suggests that nest architecture is more flexible than previously thought, and that superorganisms have mechanisms to compensate for drastic architectural perturbations and maintain colony function.more » « less
An official website of the United States government
