skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2216858

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Two new flexible-monomer two-body ab initio potential energy surfaces (PESs) for the neon and krypton van der Waals complexes with carbon dioxide were developed, extending our previous work on the Ar–CO2 molecule. The accuracy of the PESs was validated by their agreement with the vibrational spectrum of the rare-gas complexes. The intermolecular and intramolecular vibrational excitation energies were computed at the vibrational self-consistent field and vibrational configuration interaction levels of theory. Overall, the agreement between theory and experiment is excellent throughout the vibrational spectra. The observed slight splitting of the bending modes, resulting from their nondegeneracy in the complexes, is confirmed by our computations, and the results qualitatively agree with the experiment. The splitting increases with increasing polarizability of the rare-gas atom. Additionally, we explain a discrepancy in the mode assignment in the intermolecular region of the neon complex with our VCI character assignment. 
    more » « less