skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2217071

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Deep Neural Networks (DNNs) are increasingly deployed in critical applications, where ensuring their safety and robustness is paramount. We present$$_\text {CAV25}$$ CAV 25 , a high-performance DNN verification tool that uses the DPLL(T) framework and supports a wide-range of network architectures and activation functions. Since its debut in VNN-COMP’23, in which it achieved the New Participant Award and ranked 4th overall,$$_\text {CAV25}$$ CAV 25 has advanced significantly, achieving second place in VNN-COMP’24. This paper presents and evaluates the latest development of$$_\text {CAV25}$$ CAV 25 , focusing on the versatility, ease of use, and competitive performance of the tool.$$_\text {CAV25}$$ CAV 25 is available at:https://github.com/dynaroars/neuralsat. 
    more » « less
    Free, publicly-accessible full text available July 22, 2026
  2. Code documentation is a critical artifact of software development, bridging human understanding and machine- readable code. Beyond aiding developers in code comprehension and maintenance, documentation also plays a critical role in automating various software engineering tasks, such as test oracle generation (TOG). In Java, Javadoc comments offer structured, natural language documentation embedded directly within the source code, typically describing functionality, usage, parameters, return values, and exceptional behavior. While prior research has explored the use of Javadoc comments in TOG alongside other information, such as the method under test (MUT), their potential as a stand-alone input source, the most relevant Javadoc components, and guidelines for writing effective Javadoc comments for automating TOG remain less explored. In this study, we investigate the impact of Javadoc comments on TOG through a comprehensive analysis. We begin by fine-tuning 10 large language models using three different prompt pairs to assess the role of Javadoc comments alongside other contextual information. Next, we systematically analyze the impact of different Javadoc comment’s components on TOG. To evaluate the generalizability of Javadoc comments from various sources, we also generate them using the GPT-3.5 model. We perform a thorough bug detection study using Defects4J dataset to understand their role in real-world bug detection. Our results show that incorporating Javadoc comments improves the accuracy of test oracles in most cases, aligning closely with ground truth. We find that Javadoc comments alone can match or even outperform approaches that utilize the MUT implementation. Additionally, we identify that the description and the return tag are the most valuable components for TOG. Finally, our approach, when using only Javadoc comments, detects between 19% and 94% more real-world bugs in Defects4J than prior methods, establishing a new state-of-the-art. To further guide developers in writing effective documentation, we conduct a detailed qualitative study on when Javadoc comments are helpful or harmful for TOG. 
    more » « less
    Free, publicly-accessible full text available June 19, 2026
  3. Free, publicly-accessible full text available April 26, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Deep Neural Networks (DNN) have emerged as an effective approach to tackling real-world problems. However, like human-written software, DNNs are susceptible to bugs and attacks. This has generated significant interests in developing effective and scalable DNN verification techniques and tools. Recent developments in DNN verification have highlighted the potential of constraint-solving approaches that combine abstraction techniques with SAT solving. Abstraction approaches are effective at precisely encode neuron behavior when it is linear, but they lead to overapproximation and combinatorial scaling when behavior is non-linear. SAT approaches in DNN verification have incorporated standard DPLL techniques, but have overlooked important optimizations found in modern SAT solvers that help them scale on industrial benchmarks. In this paper, we present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach. VeriStable leverages the insight that while neuron behavior may be non-linear across the entire DNN input space, at intermediate states computed during verification many neurons may be constrained to have linear behavior – these neurons are stable. Efficiently detecting stable neurons reduces combinatorial complexity without compromising the precision of abstractions. Moreover, the structure of clauses arising in DNN verification problems shares important characteristics with industrial SAT benchmarks. We adapt and incorporate multi-threading and restart optimizations targeting those characteristics to further optimize DPLL-based DNN verification. We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully- connected feedforward networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets) applied to the standard MNIST and CIFAR datasets. Preliminary results show that VeriStable is competitive and outperforms state-of-the-art DNN verification tools, including 𝛼-𝛽-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively. 
    more » « less
  6. Deep neural networks (DNN) are being used in a wide range of applications including safety-critical systems. Several DNN test gen- eration approaches have been proposed to generate fault-revealing test inputs. However, the existing test generation approaches do not systematically cover the input data distribution to test DNNs with diverse inputs, and none of the approaches investigate the re- lationship between rare inputs and faults. We propose cit4dnn, an automated black-box approach to generate DNN test sets that are feature-diverse and that comprise rare inputs. cit4dnn constructs diverse test sets by applying combinatorial interaction testing to the latent space of generative models and formulates constraints over the geometry of the latent space to generate rare and fault-revealing test inputs. Evaluation on a range of datasets and models shows that cit4dnn generated tests are more feature diverse than the state-of-the-art, and can target rare fault-revealing testing inputs more effectively than existing methods. 
    more » « less
  7. Finkbeiner, Bernd; Kovacs, Laura (Ed.)
    With the growing use of deep neural networks(DNN) in mis- sion and safety-critical applications, there is an increasing interest in DNN verification. Unfortunately, increasingly complex network struc- tures, non-linear behavior, and high-dimensional input spaces combine to make DNN verification computationally challenging. Despite tremen- dous advances, DNN verifiers are still challenged to scale to large ver- ification problems. In this work, we explore how the number of stable neurons under the precondition of a specification gives rise to verifica- tion complexity. We examine prior work on the problem, adapt it, and develop several novel approaches to increase stability. We demonstrate that neuron stability can be increased substantially without compromis- ing model accuracy and this yields a multi-fold improvement in DNN verifier performance. 
    more » « less