skip to main content


Search for: All records

Award ID contains: 2217523

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Engineering education research has long been rich in behavioral observations and inquiries. These investigations span a range of levels, from individual behaviors to group dynamics to organizational influences. Such behavioral research delves into the complex interplay of behaviors and actions, exploring their origins and impacts on educational environments and structures. Topics encompass learning, identity development, engagement, and professional practices, among others, that benefit from understanding behavioral choices and their underlying motivations. Ultimately, behavioral research in engineering education aids in comprehending and predicting how individuals operate, form habits, and transform themselves and their surroundings through their chosen actions. Regrettably, behavioral research in engineering education has traditionally relied on a limited set of frameworks, like EVT, SDT, and self-efficacy, thereby restricting the analytic depth of behavioral choice. These frameworks primarily focus on whether individuals feel they can perform a certain behavior or which behaviors are most salient in given situations while overlooking the justifications, or the why, that drive behavioral choices – a critical aspect of the complete picture. Justifications are important; behaviors are context-specific and dynamic, closely tied to an individual's interpretations of their surroundings, expectations, self-concept, and goals, among other factors. Therefore, understanding why behaviors are performed yields a more nuanced image that combines these influences with their eventual outcomes. In an effort to explore behavioral choices and investigate why they are, or are not, performed, this paper presents the Reasoned Action Approach (RAA) framework. This approach emphasizes the pivotal role of intention in individuals' behavioral choices. It proposes that personal beliefs, norms, and abilities are the key determinants of intentionality. Whether or not an individual performs a behavior is therefore contingent upon their beliefs about performing the behavior, specifically their behavioral, normative, and control beliefs. These beliefs reveal their feelings toward a behavior, their expectations of social acceptability, and their perceived capability to execute the behavior. As a result, the RAA transcends contextual constraints and can be applied to a wide spectrum of behaviors, environments, and systems, shedding light on how individuals perceive actions and decide whether to act upon them. We introduce the RAA to offer engineering education research a substantive theory for extracting and investigating the determinants behind individuals' preferential behaviors. Further, the RAA broadens existing behavioral analysis by emphasizing the factors behind behavioral choices, specifically focusing on the intricate interplay between beliefs and social norms in the decision-making process. In this context, the RAA represents a distinctive and novel approach to conceptualizing behavior, which will benefit fellow researchers. This paper begins with a review of pertinent engineering and higher education literature to situate the RAA within similar behavioral choice studies. It then explores the components of the RAA, delving into their significance and implications. The paper concludes with select research both within and beyond the engineering education domain to underscore the applicability, utility, and relevance of the RAA and provide examples for future inquiries. 
    more » « less
    Free, publicly-accessible full text available June 23, 2025
  2. This project explores the collaborative skills occurring within engineering education and practice. While technical competence is crucial, collaborative skills are paramount in engineering enterprises, and current evidence suggests working in teams does not ensure the development of effective collaboration behaviors among engineers. Yet, lifelong learning requires engineers to navigate complex interactions within diverse design teams, emphasizing the need for a nuanced understanding of collaboration. To address this gap, our study aims to identify the least-performed effective collaboration behaviors in engineering capstone teams and explore the reasons behind this occurrence. This investigation is part of a larger study that employs the Reasoned Action Approach1 where we seek to uncover individual beliefs and factors influencing the performance of target behaviors. These insights serve as tools for engineers, students, educators, and managers to assess and enhance collaboration skills, fostering effective teamwork in engineering settings. Ultimately, this overarching goal of advancing professional formation in engineering distills into the key question: Why do individuals exhibit variations in performing effective collaboration behaviors in engineering teams? 
    more » « less
    Free, publicly-accessible full text available June 3, 2025