skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2218467

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP’s influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality and multiplexing. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into structures to control cell and tissue shape and behavior. 
    more » « less
  2. Clathrin-mediated endocytosis is essential for the removal of transmembrane proteins from the plasma membrane in all eukaryotic cells. Many transmembrane proteins are glycosylated. These proteins collectively comprise the glycocalyx, a sugar-rich layer at the cell surface, which is responsible for intercellular adhesion and recognition. Previous work has suggested that glycosylation of transmembrane proteins reduces their removal from the plasma membrane by endocytosis. However, the mechanism responsible for this effect remains unknown. To study the impact of glycosylation on endocytosis, we replaced the ectodomain of the transferrin receptor, a well-studied transmembrane protein that undergoes clathrin-mediated endocytosis, with the ectodomain of MUC1, which is highly glycosylated. When we expressed this transmembrane fusion protein in mammalian epithelial cells, we found that its recruitment to endocytic structures was substantially reduced in comparison to a version of the protein that lacked the MUC1 ectodomain. This reduction could not be explained by a loss of mobility on the cell surface or changes in endocytic dynamics. Instead, we found that the bulky MUC1 ectodomain presented a steric barrier to endocytosis. Specifically, the peptide backbone of the ectodomain and its glycosylation each made steric contributions, which drove comparable reductions in endocytosis. These results suggest that glycosylation constitutes a biophysical signal for retention of transmembrane proteins at the plasma membrane. This mechanism could be modulated in multiple disease states that exploit the glycocalyx, from cancer to atherosclerosis. 
    more » « less