skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2219003

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Advancements in fabrication methods have shaped new computing device technologies. Among these methods, depositing electrical contacts to the channel material is fundamental to device characterization. Novel layered and 2D materials are promising for next‐generation computing electronic channel materials. Direct‐write printing of conductive inks is introduced as a surprisingly effective, significantly faster, and cleaner method to contact different classes of layered materials, including graphene (semi‐metal), MoS2(semiconductor), Bi‐2212 (superconductor), and Fe5GeTe2(metallic ferromagnet). Based on the electrical response, the quality of the printed contacts is comparable to what is achievable with resist‐based lithography techniques. These devices are tested by sweeping gate voltage, temperature, and magnetic field to show that the materials remain pristine post‐processing. This work demonstrates that direct‐write printing is an agile method for prototyping and characterizing the electrical properties of novel layered materials. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  2. Free, publicly-accessible full text available July 30, 2026
  3. The advent of layered materials has unveiled new opportunities for tailoring electromagnetic waves at the subwavelength scale, particularly through the study of polaritons, a hybrid light–matter excitation. In this context, twist-optics, which investigates the optical properties of twisted stacks of van der Waals (vdW) layered specimens, has emerged as a powerful tool. Here, we explore the tunability of phonon polaritons in α-V2O5via interlayer twisting using scanning nano-infrared (IR) imaging. We show that the polaritonic response can be finely adjusted by varying their interlayer electromagnetic coupling, allowing for precise control over the propagation direction and phase transition from open unidirectional iso-frequency contours to closed elliptic geometries. Our experimental results, in conjugate with theoretical modeling, reveal the mechanisms underpinning this tunability, highlighting the role of twist-induced nano-light modifications for advanced nanophotonic control at the nanoscale. 
    more » « less
  4. van der Waals magnetic materials open up exciting possibilities to investigate fundamental spin properties in low-dimensional systems and to build compact functional spintronic structures. This review focuses on the recent progress in two-dimensional(2D) magnets that explore beyond the homogenous magnetically-ordered state, including magnons (spin waves), magnetic skyrmions, and complex magnetic domains. Properties of these spin and topology excitations in 2D magnets provide insights into spin-orbit interactions and other forms of coupling between electrons, phonons, and spin-dependent excitations. Such spin-based quasiparticles can also serve as information carriers for next-generation high-speed computing elements. We will first lay out the general theoretical basis of dynamical responses in magnetic systems, followed by detailed descriptions of experimental progress in magnons and spin textures (including magnetic domains and skyrmions). Discussion on the experimental techniques and future perspectives are also included. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  5. Free, publicly-accessible full text available November 13, 2025
  6. Free, publicly-accessible full text available November 1, 2025