skip to main content


Search for: All records

Award ID contains: 2219129

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 22, 2025
  2. The paper presents the hydrothermal synthesis, magnetic properties, and magnetic structure characterization of K2Co3(MoO4)3(OH)2half sawtooth chains.

     
    more » « less
    Free, publicly-accessible full text available April 16, 2025
  3. Novel quantum materials offer the opportunity to expand next-generation computers, high-precision sensors, and new energy technologies. Among the most important factors influencing the development of quantum materials research is the ability of inorganic and materials chemists to grow high-quality single crystals. Here, the synthesis, structure characterization and magnetic properties of Na2Cu3(SeO3)4 are reported. It exhibits a novel two-dimensional (2D) structure with isolated layers of Cu nets. Single crystals of Na2Cu3(SeO3)4 were grown using a low-temperature hydrothermal method. Single-crystal X-ray diffraction reveals that Na2Cu3(SeO3)4 crystallizes in the monoclinic crystal system and has space group symmetry of P21/n (No.14) with a unit cell of a = 8.1704(4) Å, b = 5.1659(2) Å, c = 14.7406(6) Å, β = 100.86(2), V = 611.01(5) Å3 and Z = 2. Na2Cu3(SeO3)4 comprises a 2D Cu-O-Cu lattice containing two unique copper sites, a CuO6 octahedra and a CuO5 square pyramid. The SeO3 groups bridge the 2D Cu-O-Cu layers isolating the neighboring Cu-O-Cu layers, thereby enhancing their 2D nature. Magnetic properties were determined by measuring the magnetic susceptibility of an array of randomly oriented single crystals of Na2Cu3(SeO3)4. The temperature-dependent magnetic measurement shows an antiferromagnetic transition at TN = 4 K. These results suggest the fruitfulness of hydrothermal synthesis in achieving novel quantum materials and encourage future work on the chemistry of transition metal selenite.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  4. Free, publicly-accessible full text available February 1, 2025
  5. New compositions of synthetic vesuvianite were investigated using hydrothermal synthesis. High quality single crystals with the formula Ca19Al13Si18O71(OH)7 (I) having the vesuvianite-type structure were crystallized during a high temperature hydrothermal growth reaction. Starting materials of Al2O3 and CaSiO3 reacted at 670 °C and 2 kbar in 0.5 M aqueous alkali hydroxide mineralizer to form single crystals up to 0.25 mm per edge. Similar reactions employing SrO, Fe2O3, and GeO2 reacting at 580 °C and 2 kbar in 6 M aqueous alkali hydroxide mineralizers led to the formation of the analogous Sr19Fe12Ge19O72(OH)6 (II). These crystals were obtained in sizes up to 0.5 mm per edge. The structures of both compounds were refined in space group P4/nnc after careful evaluation of the diffraction data and subsequent test refinements. Elemental analysis indicated only the presence of Ca2+, Al3+, and Si4+ cations in I and only the presence of Sr2+, Fe3+, and Ge4+ cations in II, representing synthetic vesuvianite comprising the minimum number of unique cations. The use of larger cations than are typically found in natural vesuvianite, such as Sr2+, Fe3+, and Ge4+, resulted in an expanded crystalline lattice and extended the vesuvianite analogs to include an increasing variety of elements.

     
    more » « less
  6. The sawtooth chain compound CsCo 2 (MoO 4 ) 2 (OH) is a complex magnetic system and here, we present a comprehensive series of magnetic and neutron scattering measurements to determine its magnetic phase diagram. The magnetic properties of CsCo 2 (MoO 4 ) 2 (OH) exhibit a strong coupling to the crystal lattice and its magnetic ground state can be easily manipulated by applied magnetic fields. There are two unique Co 2+ ions, base and vertex, with J bb and J bv magnetic exchange. The magnetism is highly anisotropic with the b -axis (chain) along the easy axis and the material orders antiferromagnetically at T N = 5 K. There are two successive metamagnetic transitions, the first at H c 1 = 0.2 kOe into a ferrimagnetic structure, and the other at H c 2 = 20 kOe to a ferromagnetic phase. Heat capacity measurements in various fields support the metamagnetic phase transformations, and the magnetic entropy value is intermediate between S = 3/2 and 1/2 states. The zero field antiferromagnetic phase contains vertex magnetic vectors (Co(1)) aligned parallel to the b -axis, while the base vectors (Co(2)) are canted by 34° and aligned in an opposite direction to the vertex vectors. The spins in parallel adjacent chains align in opposite directions, creating an overall antiferromagnetic structure. At a 3 kOe applied magnetic field, adjacent chains flip by 180° to generate a ferrimagnetic phase. An increase in field gradually induces the Co(1) moment to rotate along the b -axis and align in the same direction with Co(2) generating a ferromagnetic structure. The antiferromagnetic exchange parameters are calculated to be J bb = 0.028 meV and J bv = 0.13 meV, while the interchain exchange parameter is considerably weaker at J ch = (0.0047/ N ch ) meV. Our results demonstrate that the CsCo 2 (MoO 4 ) 2 (OH) is a promising candidate to study new physics associated with sawtooth chain magnetism and it encourages further theoretical studies as well as the synthesis of other sawtooth chain structures with different magnetic ions. 
    more » « less
  7. Single crystals of a new transition metal adelite-descloizite-type structure were synthesized using a high temperature (580 °C) high-pressure hydrothermal technique. Single crystal X-ray diffraction and energy dispersive X-ray analysis (EDX) were used to investigate the structure and elemental composition, respectively. SrNi(VO4)(OH) crystallizes in an acentric orthorhombic crystal system in the space group P212121 (no. 19); Z = 4, a = 5.9952(4) Å, b = 7.5844(4) Å, c = 9.2240(5) Å. The structure is comprised of a Ni–O–V framework where Sr2+ ions reside inside the channels. Single-crystal magnetic measurements display a significant anisotropy in both temperature- and field-dependent data. The temperature dependent magnetic measurement shows antiferromagnetic behavior at TN~8 K. Overall, the magnetic properties indicate the presence of competing antiferromagnetic and ferromagnetic interactions of SrNi(VO4)(OH). 
    more » « less