Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We investigate the unbiased model for money exchanges: agents give at random time a dollar to one another (if they have one). Surprisingly, this dynamics eventually leads to a geometric distribution of wealth (shown empirically by Dragulescu and Yakovenko, and rigorously by several follow-up papers). We prove a uniform-in-time propagation of chaos result as the number of agents goes to infinity, which links the stochastic dynamics to a deterministic infinite system of ordinary differential equations. This deterministic description is then analyzed by taking advantage of several entropy–entropy dissipation inequalities and we provide a quantitative almost-exponential rate of convergence toward the equilibrium (geometric distribution) in relative entropy.more » « lessFree, publicly-accessible full text available November 8, 2025
-
Abstract This paper deals with the derivation of the mean‐field limit for multi‐agent systems on a large class of sparse graphs. More specifically, the case of non‐exchangeable multi‐agent systems consisting of non‐identical agents is addressed. The analysis does not only involve PDEs and stochastic analysis but also graph theory through a new concept of limits of sparse graphs (extended graphons) that reflect the structure of the connectivities in the network and has critical effects on the collective dynamics. In this article some of the main restrictive hypothesis in the previous literature on the connectivities between the agents (dense graphs) and the cooperation between them (symmetric interactions) are removed.more » « less
-
Abstract This paper concerns the existence of global weak solutionsá la Lerayfor compressible Navier–Stokes–Fourier systems with periodic boundary conditions and the truncated virial pressure law which is assumed to be thermodynamically unstable. More precisely, the main novelty is that the pressure law is not assumed to be monotone with respect to the density. This provides the first global weak solutions result for the compressible Navier-Stokes-Fourier system with such kind of pressure law which is strongly used as a generalization of the perfect gas law. The paper is based on a new construction of approximate solutions through an iterative scheme and fixed point procedure which could be very helpful to design efficient numerical schemes. Note that our method involves the recent paper by the authors published in Nonlinearity (2021) for the compactness of the density when the temperature is given.more » « less
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
A classical problem describing the collective motion of cells, is the movement driven by consumption/depletion of a nutrient. Here we analyze one of the simplest such model written as a coupled Partial Differential Equation/Ordinary Differential Equation system which we scale so as to get a limit describing the usually observed pattern. In this limit the cell density is concentrated as a moving Dirac mass and the nutrient undergoes a discontinuity. We first carry out the analysis without diffusion, getting a complete description of the unique limit. When diffusion is included, we prove several specific a priori estimates and interpret the system as a heterogeneous monostable equation. This allow us to obtain a limiting problem which shows the concentration effect of the limiting dynamics.more » « less
-
We investigate the properties of discretizations of advection equations on non-Cartesian grids and graphs in general. Advection equations discretized on non-Cartesian grids have remained a long-standing challenge as the structure of the grid can lead to strong oscillations in the solution, even for otherwise constant velocity fields. We introduce a new method to track oscillations of the solution for rough velocity fields on any graph. The method in particular highlights some inherent structural conditions on the mesh for propagating regularity on solutions.more » « less
An official website of the United States government
