- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Kukulka, Tobias (2)
-
Wang, Xingchi (2)
-
Farrar, J_Thomas (1)
-
Plueddemann, Albert_J (1)
-
Zippel, Seth_F (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study investigates how Langmuir turbulence (LT) driven by Stokes drift shear affects the heated ocean surface boundary layer (OSBL) based on turbulence-resolving large-eddy simulations (LES) and assesses an analytic vertical mixing parameterization based on a simplified second-moment closure (SMC) approach. Diurnal solar heating forces OSBL shoaling to generate a diurnal warm layer (DWL) in which heat and momentum are trapped. Without LT, relatively weak turbulent mixing results in a near-surface jet that is associated with enhanced turbulent kinetic energy (TKE) production of shear-driven turbulence (ST), which approximately balances TKE dissipation rates. Conversely, LT maintains strong mixing, delaying the DWL formation and preventing the TKE dissipation enhancement by generating a less sheared jet. However, sufficiently strong heating destroys TKE to ultimately reduce mixing and to create more sheared jets, which effectively shifts the LT to an ST-dominated regime. A second-moment turbulence budget analysis suggests that 1) the near-surface OSBL responds rapidly to the surface forcing, 2) Stokes drift impacts heat and momentum budgets in profoundly different ways, and 3) buoyancy terms are to leading order negligible. Building on these findings and introducing a physics-based mixing length, we develop a simplified SMC model that can be solved for near-surface expressions for key turbulent variables and mixing coefficients in terms of known variables. For ST, these expressions are consistent with the Monin–Obukhov similarity theory. For LT, these expressions reveal a fundamental dependence of turbulent variables on Stokes drift shear.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Wang, Xingchi; Kukulka, Tobias; Farrar, J_Thomas; Plueddemann, Albert_J; Zippel, Seth_F (, Geophysical Research Letters)Abstract The turbulent ocean surface boundary layer (OSBL) shoals during daytime solar surface heating, developing a diurnal warm layer (DWL). The DWL significantly influences OSBL dynamics by trapping momentum and heat in a shallow near‐surface layer. Therefore, DWL depth is critical for understanding OSBL transport and ocean‐atmosphere coupling. A great challenge for determining DWL depth is considering wave‐driven Langmuir turbulence (LT), which increases vertical transport. This study investigates observations with moderate wind speeds (4–7 m/s at 10 m height) and swell waves for which breaking wave effects are less pronounced. By employing turbulence‐resolving large eddy simulation experiments that cover observed wind, wave, and heating conditions based on the wave‐averaged Craik‐Lebovich equation, we develop a DWL depth scaling unifying previous approaches. This scaling closely agrees with observed DWL depths from a year‐long mooring deployment in the subtropical North Atlantic, demonstrating the critical role of LT in determining DWL depth and OSBL dynamics.more » « less
An official website of the United States government
