- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Das, Anupam (2)
-
Ahsan, Mohammad Shamim (1)
-
Hossain, Md Shohrab (1)
-
Huang, Danny Yuxing (1)
-
Islam, Md Shariful (1)
-
Jakaria, Md (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Smart home devices are constantly exchanging data with a variety of remote endpoints. This data encompasses diverse information, from device operation and status to sensitive user information like behavioral usage patterns. However, there is a lack of transparency regarding where such data goes and with whom it is potentially shared. This paper investigates the diverse endpoints that smart home Internet-of-Things (IoT) devices contact to better understand and reason about the IoT backend infrastructure, thereby providing insights into potential data privacy risks. We analyze data from 5,413 users and 25,123 IoT devices using the IoT Inspector, an open-source application allowing users to monitor traffic from smart home devices on their networks. First, we develop semi-automated techniques to map remote endpoints to organizations and their business types to shed light on their potential relationships with IoT end products. We discover that IoT devices contact more third or support-party domains than first-party domains. We also see that the distribution of contacted endpoints varies based on the user's location and across vendors manufacturing similar functional devices, where some devices are more exposed to third parties than others. Our analysis also reveals the major organizations providing backend support for IoT smart devices and provides insights into the temporal evolution of cross-border data-sharing practices.more » « less
-
Ahsan, Mohammad Shamim; Islam, Md Shariful; Hossain, Md Shohrab; Das, Anupam (, IEEE Transactions on Dependable and Secure Computing)Despite the significant benefits of the widespread adoption of smart home Internet of Things (IoT) devices, these devices are known to be vulnerable to active and passive attacks. Existing literature has demonstrated the ability to infer the activities of these devices by analyzing their network traffic. In this study, we introduce a packet-based signature generation and detection system that can identify specific events associated with IoT devices by extracting simple features from raw encrypted network traffic. Unlike existing techniques that depend on specific time windows, our approach automatically determines the optimal number of packets to generate unique signatures, making it more resilient to network jitters. We evaluate the effectiveness, uniqueness, and correctness of our signatures by training and testing our system using four public datasets and an emulated dataset with varying network delays, verifying known signatures and discovering new ones. Our system achieved an average recall and precision of 98-99% and 98-100%, respectively, demonstrating the effectiveness and feasibility of using packet-level signatures to detect IoT device activities.more » « less
An official website of the United States government
