skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2220292

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available September 22, 2025
  3. Free, publicly-accessible full text available August 4, 2025
  4. Free, publicly-accessible full text available August 4, 2025
  5. Free, publicly-accessible full text available July 8, 2025
  6. Free, publicly-accessible full text available July 8, 2025
  7. Free, publicly-accessible full text available May 20, 2025
  8. Free, publicly-accessible full text available May 13, 2025
  9. Free, publicly-accessible full text available May 11, 2025
  10. Using a subset of observed network links, high-order link prediction (HOLP) infers missing hyperedges, that is links connecting three or more nodes. HOLP emerges in several applications, but existing approaches have not dealt with the associated predictor’s performance. To overcome this limitation, the present contribution develops a Bayesian approach and the relevant predictive distributions that quantify model uncertainty. Gaussian processes model the dependence of each node to the remaining nodes. These nonparametric models yield predictive distributions, which are fused across nodes by means of a pseudo-likelihood based criterion. Performance is quantified by proper measures of dispersion, which are associated with the predictive distributions. Tests on benchmark datasets demonstrate the benefits of the novel approach. 
    more » « less