skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2220495

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Robust principal component analysis (RPCA) is a widely used method for recovering low‐rank structure from data matrices corrupted by significant and sparse outliers. These corruptions may arise from occlusions, malicious tampering, or other causes for anomalies, and the joint identification of such corruptions with low‐rank background is critical for process monitoring and diagnosis. However, existing RPCA methods and their extensions largely do not account for the underlying probabilistic distribution for the data matrices, which in many applications are known and can be highly non‐Gaussian. We thus propose a new method called RPCA for exponential family distributions (), which can perform the desired decomposition into low‐rank and sparse matrices when such a distribution falls within the exponential family. We present a novel alternating direction method of multiplier optimization algorithm for efficient decomposition, under either its natural or canonical parametrization. The effectiveness of is then demonstrated in two applications: the first for steel sheet defect detection and the second for crime activity monitoring in the Atlanta metropolitan area. 
    more » « less
  2. Abstract Change‐point detection studies the problem of detecting the changes in the underlying distribution of the data stream as soon as possible after the change happens. Modern large‐scale, high‐dimensional, and complex streaming data call for computationally (memory) efficient sequential change‐point detection algorithms that are also statistically powerful. This gives rise to a computation versus statistical power trade‐off, an aspect less emphasized in the past in classic literature. This tutorial takes this new perspective and reviews several sequential change‐point detection procedures, ranging from classic sequential change‐point detection algorithms to more recent non‐parametric procedures that consider computation, memory efficiency, and model robustness in the algorithm design. Our survey also contains classic performance analysis, which provides useful techniques for analyzing new procedures. This article is categorized under:Statistical Models > Time Series ModelsAlgorithms and Computational Methods > AlgorithmsData: Types and Structure > Time Series, Stochastic Processes, and Functional Data 
    more » « less
  3. Free, publicly-accessible full text available May 17, 2026