skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2221908

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Several agriculturally valuable plants store their pollen in tube-like poricidal anthers, which release pollen through buzz pollination. In this process, bees rapidly vibrate the anther using their indirect flight muscles. The stiffness and resonant frequency of the anther are crucial for effective pollen release, yet the impact of turgor pressure on these properties is not well understood. Here, we performed three-point flexure tests and experimental modal analysis to determine anther transverse stiffness and resonant frequency, respectively. Dynamic nanoindentation was used to identify the anther storage modulus as a function of excitation frequency. We subsequently developed mathematical models to estimate how turgor pressure changes after the anther is removed from a flower, thereby emulating zero water availability. We found that anther stiffness decreased by 60% at 30 min post-ablation and anther resonant frequency decreased by 20% at 60 min post-ablation. Models indicated that turgor pressure in the fresh anther was ~0.2–0.3 MPa. Our findings suggest that natural fluctuations in turgor pressure due to environmental factors such as temperature and light intensity may require bees to adjust their foraging behaviors. Interestingly, the anther storage modulus increased with excitation frequency, underscoring the need for more sophisticated mechanical models that consider viscous fluid transport through plant tissue. 
    more » « less
  2. Abstract Approximately 10% of flowering plant species conceal their pollen within tube-like poricidal anthers. Bees extract pollen from poricidal anthers via floral buzzing, a behavior during which they apply cyclic forces by biting the anther and rapidly contracting their flight muscles. The success of pollen extraction during floral buzzing relies on the direction and magnitude of the forces applied by the bees, yet these forces and forcing directions have not been previously quantified. In this work, we developed an experiment to simultaneously measure the directional forces and thorax kinematics produced by carpenter bees (Xylocopa californica)during defensive buzzing, a behavior regulated by similar physiological mechanisms as floral buzzing. We found that the buzzing frequencies averaged about 130 Hz and were highly variable within individuals. Force amplitudes were on average 170 mN, but at times reached nearly 500 mN. These forces were 30–80 times greater than the weight of the bees tested. The two largest forces occurred within a plane formed by the bees’ flight muscles. Force amplitudes were moderately correlated with thorax displacement, velocity and acceleration amplitudes but only weakly correlated with buzzing frequency. Linear models developed through this work provide a mechanism to estimate forces produced during non-flight behaviors based on thorax kinematic measurements in carpenter bees. Based on the buzzing frequencies, individual bee’s capacity to vary buzz frequency and predominant forcing directions, we hypothesize that carpenter bees leverage vibration amplification to increase the deformation of poricidal anthers, and hence the amount of pollen ejected. 
    more » « less
  3. Free, publicly-accessible full text available March 12, 2026
  4. Buzz pollination involves the release of pollen from, primarily, poricidal anthers through vibrations generated by certain bee species. Despite previous experimental and numerical studies, the intricacies of pollen dynamics within vibrating anthers remain elusive due to the challenges in observing these small-scale, opaque systems. This research employs the discrete element method to simulate the pollen expulsion process in vibrating anthers. By exploring various frequencies and displacement amplitudes, a correlation between how aggressively the anther shakes and the initial rate of pollen expulsion is observed under translating oscillations. This study highlights that while increasing both the frequency and displacement of vibration enhances pollen release, the rate of release does not grow linearly with their increase. Our findings also reveal the significant role of pollen–pollen interactions, which account for upwards of one-third of the total collisions. Comparisons between two types of anther exits suggest that pore size and shape also influence expulsion rates. This research provides a foundation for more comprehensive models that can incorporate additional factors such as cohesion, adhesion and Coulomb forces, paving the way for deeper insights into the mechanics of buzz pollination and its variability across different anther types and vibration parameters. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026