skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2222795

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increased prevalence of online meetings has significantly en- hanced the practicality of a model that can automatically generate the summary of a given meeting. This paper introduces a novel and effective approach to automate the generation of meeting sum- maries. Current approaches to this problem generate general and basic summaries, considering the meeting simply as a long dia- logue. However, our novel algorithms can generate abstractive meet- ing summaries that are driven by the action items contained in the meeting transcript. This is done by recursively generating sum- maries and employing our action-item extraction algorithm for each section of the meeting in parallel. All of these sectional sum- maries are then combined and summarized together to create a coherent and action-item-driven summary. In addition, this paper introduces three novel methods for dividing up long transcripts into topic-based sections to improve the time efficiency of our al- gorithm, as well as to resolve the issue of large language models (LLMs) forgetting long-term dependencies. Our pipeline achieved a BERTScore of 64.98 across the AMI corpus, which is an approxi- mately 4.98% increase from the current state-of-the-art result pro- duced by a fine-tuned BART (Bidirectional and Auto-Regressive Transformers) model. 
    more » « less