- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Golia, Logan (1)
-
Kalita, Jugal (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The increased prevalence of online meetings has significantly en- hanced the practicality of a model that can automatically generate the summary of a given meeting. This paper introduces a novel and effective approach to automate the generation of meeting sum- maries. Current approaches to this problem generate general and basic summaries, considering the meeting simply as a long dia- logue. However, our novel algorithms can generate abstractive meet- ing summaries that are driven by the action items contained in the meeting transcript. This is done by recursively generating sum- maries and employing our action-item extraction algorithm for each section of the meeting in parallel. All of these sectional sum- maries are then combined and summarized together to create a coherent and action-item-driven summary. In addition, this paper introduces three novel methods for dividing up long transcripts into topic-based sections to improve the time efficiency of our al- gorithm, as well as to resolve the issue of large language models (LLMs) forgetting long-term dependencies. Our pipeline achieved a BERTScore of 64.98 across the AMI corpus, which is an approxi- mately 4.98% increase from the current state-of-the-art result pro- duced by a fine-tuned BART (Bidirectional and Auto-Regressive Transformers) model.more » « less
An official website of the United States government

Full Text Available