skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2223263

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study investigates the seasonal prediction capabilities of three models, all developed by the National Science Foundation (NSF) National Center for Atmospheric Research (NCAR) and implemented by the University of Miami, within the North American Multimodel Ensemble (NMME) framework. All three models, Community Climate System Model, version 3 (CCSM3), CCSM4, and Community Earth System Model, version 1 (CESM1), are initialized using the Climate Forecast System Reanalysis (CFSR) and have a common period of 1991–2018. The models’ performance in predicting key climate variables including surface temperature, precipitation, and El Niño–Southern Oscillation (ENSO) teleconnections is assessed. The models’ prediction skill is assessed using the sign test, a robust nonparametric method for comparing forecast errors. CCSM4 succeeded CCSM3 in 2014, bringing a much more accurate representation of global temperature trends and improved prediction of precipitation extremes and 2-m temperature over land. CESM1, introduced in 2023, shows further improvement relative to CCSM4 in the prediction of sea surface temperature in the tropical Pacific and precipitation extremes over land. The improvement in precipitation prediction skill is encouraging, as this field has seen little improvement over the life of the NMME. The modeled similarity to observed ENSO teleconnection patterns of 2-m temperature is somewhat less in CESM1 than in CCSM4, although precipitation teleconnection patterns are similar. CCSM4 and CESM1 show stronger surface temperature trends in the tropical Pacific and Southern Ocean than observed trends over the same period, a common problem for current state-of-the-art climate models with implications for prediction and for climate projections. Significance StatementThis study documents the improvements in seasonal climate prediction across three generations of coupled models developed by the National Science Foundation National Center for Atmospheric Research (NCAR) and implemented within the North American Multimodel Ensemble (NMME) by the University of Miami. Model upgrades are an important aspect of the NMME and have contributed to incremental increases in forecast skill. A thorough and ongoing assessment of individual models is critical to our understanding of the NMME system’s evolution and to future model improvements. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract The effect of the El Niño–Southern Oscillation (ENSO) teleconnection and climate change trends on observed North American wintertime daily 2-m temperature is investigated for 1960–2022 with a quantile regression model, which represents the variability of the full distribution of daily temperature, including extremes and changes in spread. Climate change trends are included as a predictor in the regression model to avoid the potentially confounding effect on ENSO teleconnections. Based on prior evidence of asymmetric impacts from El Niño and La Niña, the ENSO response is taken to be piecewise linear, and the regression model contains separate predictors for warm and cool ENSO. The relationship between these predictors and shifts in median, interquartile range, skewness, and kurtosis of daily 2-m temperature are summarized through Legendre polynomials. Warm ENSO conditions result in significant warming shifts in the median and contraction of the interquartile range in central-northern North America, while no opposite effect is found for cool ENSO conditions in this region. In the southern United States, cool ENSO conditions produce a warming shift in the median, while warm ENSO conditions have little impact on the median, but contracts the interquartile range. Climate change trends are present as a near-uniform warming in the median and across quantiles and have no discernable impact on interquartile range or higher-order moments. Trends and ENSO together explain a substantial fraction of the interannual variability of daily temperature distribution shifts across much of North America and, to a lesser extent, changes of the interquartile range. 
    more » « less