Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Precise modulation of excitable tissues—including neurons and cardiomyocytes—is essential for both understanding physiological functions and developing advanced therapies for neurological and cardiac disorders. Conventional modulation techniques such as electrical stimulation, pharmacological intervention, and optogenetics, face limitations in terms of invasiveness, spatiotemporal resolution, and/or requirement for genetic modulation. Optoelectronic interfaces based on light‐matter interaction have emerged as promising alternatives. These platforms offer wireless, nongenetic modulation capabilities with high spatiotemporal resolution and minimal invasiveness and risks of infection. Here, a summary of recent advances in nongenetic optoelectronic modulation strategies is presented. Aspects such as material selection and processing, device designs, working principles, and fabrication techniques are discussed. Then, key characterization methodologies, including benchtop assessments and validation within the living systems are discussed. Alongside the discussion, representative applications across in vitro and in vivo models of cardiac and central/peripheral nervous systems are highlighted. Finally, future directions and clinical opportunities, aiming to provide a thorough reference for the continued development of this field for both fundamental research and next‐generation therapeutic applications are explored.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Abstract Glutamate is one of the most important excitatory neurotransmitters within the mammalian central nervous system. The role of glutamate in regulating neural network signaling transmission through both synaptic and extra‐synaptic paths highlights the importance of the real‐time and continuous monitoring of its concentration and dynamics in living organisms. Progresses in multidisciplinary research have promoted the development of electrochemical glutamate sensors through the co‐design of materials, interfaces, electronic devices, and integrated systems. This review summarizes recent works reporting various electrochemical sensor designs and their applicability as miniaturized neural probes to in vivo sensing within biological environments. We start with an overview of the role and physiological significance of glutamate, the metabolic routes, and its presence in various bodily fluids. Next, we discuss the design principles, commonly employed validation models/protocols, and successful demonstrations of multifunctional, compact, and bio‐integrated devices in animal models. The final section provides an outlook on the development of the next generation glutamate sensors for neuroscience and neuroengineering, with the aim of offering practical guidance for future research.more » « less
-
Abstract Chemical biomarkers in the central nervous system can provide valuable quantitative measures to gain insight into the etiology and pathogenesis of neurological diseases. Glutamate, one of the most important excitatory neurotransmitters in the brain, has been found to be upregulated in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, stroke, epilepsy, chronic pain, and migraines. However, quantitatively monitoring glutamate release in situ has been challenging. This work presents a novel class of flexible, miniaturized probes inspired by biofuel cells for monitoring synaptically released glutamate in the nervous system. The resulting sensors, with dimensions as low as 50 by 50 μm, can detect real‐time changes in glutamate within the biologically relevant concentration range. Experiments exploiting the hippocampal circuit in mice models demonstrate the capability of the sensors in monitoring glutamate release via electrical stimulation using acute brain slices. These advances could aid in basic neuroscience studies and translational engineering, as the sensors provide a diagnostic tool for neurological disorders. Additionally, adapting the biofuel cell design to other neurotransmitters can potentially enable the detailed study of the effect of neurotransmitter dysregulation on neuronal cell signaling pathways and revolutionize neuroscience.more » « less
-
Abstract Wearable electronics play important roles in noninvasive, continuous, and personalized monitoring of multiple biosignals generated by the body. To unleash their full potential for the next‐generation human‐centered bio‐integrated electronics, wireless sensing capability is a desirable feature. However, state‐of‐the‐art wireless sensing technologies exploit rigid and bulky electronic modules for power supply, signal generation, and data transmission. This study reports a battery‐free device technology based on a “two‐part” resonance circuit model with modularized, physically separated, and detachable functional units for magnetic coupling and biosensing. The resulting platform combines advantages of electronics and microfluidics with low cost, minimized form factors, and improved performance stability. Demonstration of a detachable sweat patch capable of simultaneous recording of cortisol concentration, pH value, and temperature highlights the potential of the “two‐part” circuit for advanced, transformative biosensing. The resulting wireless sensors provide a new engineering solution to monitoring biosignals through intimate and seamless integration with skin surfaces.more » « less
-
Human–machine interfaces have received significant attention for their potential in VR/AR. This review summarizes recent progress in simulating physical and chemical sensations for enhancing eating experiences by utilizing wearable electroncis.more » « lessFree, publicly-accessible full text available September 15, 2026
-
Recent advancements in virtual reality (VR) and augmented reality (AR) have strengthened the bridge between virtual and real worlds via human-machine interfaces. Despite extensive research into biophysical signals, gustation, a fundamental component of the five senses, has experienced limited progress. This work reports a bio-integrated gustatory interface, “e-Taste,” to address the underrepresented chemical dimension in current VR/AR technologies. This system facilitates remote perception and replication of taste sensations through the coupling of physically separated sensors and actuators with wireless communication modules. By using chemicals representing five basic tastes, systematic codesign of key functional components yields reliable performance including tunability, versatility, safety, and mechanical robustness. Field testing involving human subjects focusing on user perception confirms its proficiency in digitally simulating a range of taste intensities and combinations. Overall, this investigation pioneers a chemical dimension in AR/VR technology, paving the way for users to transcend visual and auditory virtual engagements by integrating the taste sensation into virtual environment for enhanced digital experiences.more » « lessFree, publicly-accessible full text available February 28, 2026
An official website of the United States government
