Extreme sea levels impact coastal society, property, and the environment. Various mitigation measures are engineered to reduce these impacts, which require extreme event probabilities typically estimated site-by-site. The site-by-site estimates usually have high uncertainty, are conditionally independent, and do not provide estimates for ungauged locations. In contrast, the max-stable process explicitly incorporates the spatial dependence structure and produces more realistic event probabilities and spatial surfaces. We leverage the max-stable process to compute extreme event probabilities at gridded locations (gauged and ungauged) and derive their spatial surfaces along the contiguous United States coastlines by pooling annual maximum (AM) surges from selected long-record tide gauges. We also generate synthetic AM surges at the grid locations using the predicted distribution parameters and reordering them in the rank space to integrate the spatiotemporal variability. The results will support coastal planners, engineers, and stakeholders to make the most precise and confident decisions for coastal flood risk reduction.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Sea‐level rise (SLR) increasingly threatens coastal communities around the world. However, not all coastal communities are equally threatened, and realistic estimation of hazard is difficult. Understanding SLR impacts on extreme sea level is challenging due to interactions between multiple tidal and non‐tidal flood drivers. We here use global hourly tidal data to show how and why tides and surges interact with mean sea level (MSL) fluctuations. At most locations around the world, the amplitude of at least one tidal constituent and/or amplitude of non‐tidal residual have changed in response to MSL variation over the past few decades. In 37% of studied locations, “Potential Maximum Storm Tide” (PMST), a proxy for extreme sea level dynamics, co‐varies with MSL variations. Over all stations, the median PMST will be 20% larger by the mid‐century, and conventional approaches that simply shift the current storm tide regime up at the rate of projected SLR may underestimate the flooding hazard at these locations by up to a factor of four. Micro‐ and meso‐tidal systems and those with diurnal tidal regime are generally more susceptible to altered MSL than other categories. The nonlinear interactions of MSL and storm tide captured in PMST statistics contribute, along with projected SLR, to the estimated increase in flood hazard at three‐fourth of studied locations by mid‐21st century. PMST is a threshold that captures nonlinear interactions between extreme sea level components and their co‐evolution over time. Thus, use of this statistic can help direct assessment and design of critical coastal infrastructure.
-
Abstract Design of coastal defense structures like seawalls and breakwaters can no longer be based on stationarity assumption. In many parts of the world, an anticipated sea‐level rise (SLR) due to climate change will constitute present‐day extreme sea levels inappropriate for future coastal flood risk assessments since it will significantly increase their probability of occurrence. Here, we first show that global annual maxima sea levels (AMSLs) have been increasing in magnitude over the last decades, primarily due to a positive shift in mean sea level (MSL). Then, we apply non‐stationary extreme value theory to model the extremal behavior of sea levels with MSL as a covariate and quantify the evolution of AMSLs in the following decades using revised probabilistic sea‐level rise projections. Our analysis reveals that non‐stationary distributions exhibit distinct differences compared to simply considering stationary conditions with a change in location parameter equal to the amount of MSL rise. With the use of non‐stationary distributions, we show that by the year 2050 many locations will experience their present‐day 100‐yr return level as an event with return period less than 15 and 9 years under the moderate (RCP4.5) and high (RCP8.5) representative concentration pathways. Also, we find that by the end of this century almost all locations examined will encounter their current 100‐yr return level on an annual basis, even if CO2concentration is kept at moderate levels (RCP4.5). Our assessment accounts for large uncertainty by incorporating ambiguities in both SLR projections and non‐stationary extreme value distribution parameters via a Monte Carlo simulation.
-
Extreme water levels (EWLs) resulting from tropical and extratropical cyclones pose significant risks to coastal communities and their interconnected ecosystems. To date, physically-based models have enabled accurate characterization of EWLs despite their inherent high computational cost. However, the applicability of these models is limited to data-rich sites with diverse morphologic and hydrodynamic characteristics. The dependence on high quality spatiotemporal data, which is often computationally expensive, hinders the applicability of these models to regions of either limited or data-scarce conditions. To address this challenge, we present a computationally efficient deep learning framework, employing Long Short-Term Memory (LSTM) networks, to predict the evolution of EWLs beyond site-specific training stations. The framework, named LSTM-Station Approximated Models (LSTM-SAM), consists of a collection of bidirectional LSTM models enhanced with a custom attention layer mechanism embedded in the model architecture. Moreover, the LSTM-SAM framework incorporates a transfer learning approach that is applicable to target (tide-gage) stations along the U.S. Atlantic Coast. The LSTM-SAM framework demonstrates satisfactory performance with “transferable” models achieving average Kling-Gupta Efficiency (KGE), Nash-Sutcliffe Efficiency (NSE), and Root-Mean Square Error (RMSE) ranging from 0.78 to 0.92, 0.90 to 0.97, and 0.09 to 0.18 at the target stations, respectively. Following these results, the LSTM-SAM framework can accurately predict not only EWLs but also their evolution over time, i.e., onset, peak, and dissipation, which could assist in large-scale operational flood forecasting, especially in regions with limited resources to set up high fidelity physically-based models.more » « lessFree, publicly-accessible full text available June 11, 2025
-
Frequency analysis of extreme storm surge is crucial for coastal flood risk assessments. To date, such analyses are based on traditional extreme value theory (EVT) and its associated generalized extreme value (GEV) distribution. The metastatistical extreme value distribution (MEVD) provides a new approach that can alleviate limitations of EVT. This paper provides a comparison between the GEV distribution and the MEVD on their ability to predict “unseen” upper-tail quantiles of storm surge along the US coastline. We analyze the error structure of these distributions by performing a cross-validation experiment where we repeatedly divide the data record into a calibration and validation set, respectively, and then compute the predictive non-dimensional error. We find that the MEVD provides comparable estimates of extreme storm surge to those of the GEV distribution, with discrepancies being subtle and dependent on tide gauge location and calibration set length. Additionally, we show that predictions from the MEVD are more robust with less variability in error. Finally, we illustrate that the employment of the MEVD, as opposed to classical EVT, can lead to remarkable differences in design storm surge height; this has serious implications for engineering applications at sites where the novel MEVD is found more appropriate.more » « lessFree, publicly-accessible full text available March 28, 2025
-
Abstract. Compound flood (CF) modeling enables the simulation of nonlinear water level dynamics in which concurrent or successive flood drivers synergize, producing larger impacts than those from individual drivers. However, CF modeling is subject to four main sources of uncertainty: (i) the initial condition, (ii) the forcing (or boundary) conditions, (iii) the model parameters, and (iv) the model structure. These sources of uncertainty, if not quantified and effectively reduced, cascade in series throughout the modeling chain and compromise the accuracy of CF hazard assessments. Here, we characterize cascading uncertainty using linked process-based and machine learning (PB–ML) models for a well-known CF event, namely, Hurricane Harvey in Galveston Bay, TX. For this, we run a set of hydrodynamic model scenarios to quantify isolated and cascading uncertainty in terms of maximum water level residuals; additionally, we track the evolution of residuals during the onset, peak, and dissipation of Hurricane Harvey. We then develop multiple linear regression (MLR) and PB–ML models to estimate the relative and cumulative contribution of the four sources of uncertainty to total uncertainty over time. Results from this study show that the proposed PB–ML model captures “hidden” nonlinear associations and interactions among the sources of uncertainty, thereby outperforming conventional MLR models. The model structure and forcing conditions are the main sources of uncertainty in CF modeling, and their corresponding model scenarios, or input features, contribute to 56 % of variance reduction in the estimation of maximum water level residuals. Following these results, we conclude that PB–ML models are a feasible alternative for quantifying cascading uncertainty in CF modeling.