skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2223957

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transitions of biological tissues between solid‐like and liquid‐like phases have been of great recent interest. Here, the first successful cell‐by‐cell evaluation of tissue viscoelastic transition is presented. An in situ micro‐mechanical perturbation is applied to a microtissue, and the resulting volumetric deformation is evaluated using 3D light‐sheet microscopy and digital image correlation (DIC), quantifying both solid‐like, well‐aligned displacement and liquid‐like swirling motion between individual cells. The viscoelastic transition of fibroblasts is crucial in fundamental physiological events, such as placentation, cancer dissemination, and wound healing. This study investigates 3D organoid systems modeling maternal‐fetal and tumor‐stroma interfaces, demonstrating established molecular and structural parallels. The analysis visualizes individual cells in stromal‐epithelial interactions and how they collectively alter tissue viscoelastic properties. It also enables in‐silico microdissection, linking single‐cell viscoelasticity with multi‐channel fluorescence. RNAseq analysis of endometrial stromal fibroblasts shows that decidualization activates mechano‐transcriptional regulators, including myocardin‐related transcription factors (MRTFs), associated with increased cellular contractility and actomyosin mobilization. Knocking down MRTFA in cancer‐associated fibroblasts in the tumor‐fibroblast co‐culture 3D model induces significant changes in fibroblast properties, mirroring those observed in the maternal‐fetal interface model, highlighting parallels between placentation and cancer invasion. This analysis confirms existing beliefs and discovers new insights broadly applicable to studying organoids, embryos, tumors, and other tissues. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Ovulation is critical for sexual reproduction and consists of the process of liberating fertilizable oocytes from their somatic follicle capsules, also known as follicle rupture. The mechanical force for oocyte expulsion is largely unknown in many species. Our previous work demonstrated that Drosophila ovulation, as in mammals, requires the proteolytic degradation of the posterior follicle wall and follicle rupture to release the mature oocyte from a layer of somatic follicle cells. Here, we identified actomyosin contraction in somatic follicle cells as the major mechanical force for follicle rupture. Filamentous actin (F-actin) and nonmuscle myosin II (NMII) are highly enriched in the cortex of follicle cells upon stimulation with octopamine (OA), a monoamine critical for Drosophila ovulation. Pharmacological disruption of F-actin polymerization prevented follicle rupture without interfering with the follicle wall breakdown. In addition, we demonstrated that OA induces Rho1 guanosine triphosphate (GTP)ase activation in the follicle cell cortex, which activates Ras homolog (Rho) kinase to promote actomyosin contraction and follicle rupture. All these results led us to conclude that OA signaling induces actomyosin cortex enrichment and contractility, which generates the mechanical force for follicle rupture during Drosophila ovulation. Due to the conserved nature of actomyosin contraction, this work could shed light on the mechanical force required for follicle rupture in other species including humans. 
    more » « less
  3. We have developed a novel microscopic analysis system that combines the functions of light-sheet fluorescence microscopy (LSM) and dynamic mechanical analysis (DMA). We have integrated the three uniquely designed components of (i) a MEMS dynamic compression device with a μ-force sensor, (ii) a high-speed 3D light-sheet scanner and an imager, and (iii) a custom-programmed image-based 3D modeling algorithm. Here, we demonstrate spatially-resolved mechanical characterization of viscoelastic materials under high-resolution 3D fluorescence microscopy for the first time. 
    more » « less
  4. Weihs, Daphne (Ed.)
    Multicellular cancer spheroids are an in vitro tissue model that mimics the three-dimensional microenvironment. As spheroids grow, they develop the gradients of oxygen, nutrients, and catabolites, affecting crucial tumor characteristics such as proliferation and treatment responses. The measurement of spheroid stiffness provides a quantitative measure to evaluate such structural changes over time. In this report, we measured the stiffness of size-matched day 5 and day 20 tumor spheroids using a custom-built microscale force sensor and conducted transmission electron microscopy (TEM) imaging to compare the internal structures. We found that older spheroids reduce interstitial spaces in the core region and became significantly stiffer. The measured elastic moduli were 260±100 and 680±150 Pa, for day 5 and day 20 spheroids, respectively. The day 20 spheroids showed an optically dark region in the center. Analyzing the high-resolution TEM images of spheroid middle sections across the diameter showed that the cells in the inner region of the day 20 spheroids are significantly larger and more closely packed than those in the outer regions. On the other hand, the day 5 spheroids did not show a significant difference between the inner and outer regions. The observed reduction of the interstitial space may be one factor that contributes to stiffer older spheroids. 
    more » « less