skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2224139

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The exploration of emerging quantum phenomena by stacking dissimilar atomic layered materials into van der Waals (vdW) heterostructures has driven the development of layer assembly techniques. Achieving ultralow disorder within these heterostructures is crucial for unlocking their novel physical properties. However, current fabrication methods for designer heterostructures have limitations in throughput, yield, and scalability. Over the past decade, engineering toolkits have evolved to address some of these challenges, but their adoption for fabricating designer heterostructures remains limited. In this review, an overview of these emerging engineering toolkits is provided, and examine their utility and limitations in achieving ultralow disordered heterostructures. It is hoped that the insights from this review article can help guide future research directions on advancing the fabrication process of designer heterostructures. 
    more » « less