skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2225079

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The field of remote sensing has undergone a remarkable shift where vast amounts of imagery are now readily available to researchers. New technologies, such as uncrewed aircraft systems, make it possible for anyone with a moderate budget to gather their own remotely sensed data, and methodological innovations have added flexibility for processing and analyzing data. These changes create both the opportunity and need to reproduce, replicate, and compare remote sensing methods and results across spatial contexts, measurement systems, and computational infrastructures. Reproducing and replicating research is key to understanding the credibility of studies and extending recent advances into new discoveries. However, reproducibility and replicability (R&R) remain issues in remote sensing because many studies cannot be independently recreated and validated. Enhancing the R&R of remote sensing research will require significant time and effort by the research community. However, making remote sensing research reproducible and replicable does not need to be a burden. In this paper, we discuss R&R in the context of remote sensing and link the recent changes in the field to key barriers hindering R&R while discussing how researchers can overcome those barriers. We argue for the development of two research streams in the field: (1) the coordinated execution of organized sequences of forward-looking replications, and (2) the introduction of benchmark datasets that can be used to test the replicability of results and methods. 
    more » « less