skip to main content


Search for: All records

Award ID contains: 2225229

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Purpose

    This study aims to evaluate a method of building a biomedical knowledge graph (KG).

    Design/methodology/approach

    This research first constructs a COVID-19 KG on the COVID-19 Open Research Data Set, covering information over six categories (i.e. disease, drug, gene, species, therapy and symptom). The construction used open-source tools to extract entities, relations and triples. Then, the COVID-19 KG is evaluated on three data-quality dimensions: correctness, relatedness and comprehensiveness, using a semiautomatic approach. Finally, this study assesses the application of the KG by building a question answering (Q&A) system. Five queries regarding COVID-19 genomes, symptoms, transmissions and therapeutics were submitted to the system and the results were analyzed.

    Findings

    With current extraction tools, the quality of the KG is moderate and difficult to improve, unless more efforts are made to improve the tools for entity extraction, relation extraction and others. This study finds that comprehensiveness and relatedness positively correlate with the data size. Furthermore, the results indicate the performances of the Q&A systems built on the larger-scale KGs are better than the smaller ones for most queries, proving the importance of relatedness and comprehensiveness to ensure the usefulness of the KG.

    Originality/value

    The KG construction process, data-quality-based and application-based evaluations discussed in this paper provide valuable references for KG researchers and practitioners to build high-quality domain-specific knowledge discovery systems.

     
    more » « less
  2. With the wider adoption of edge computing services, intelligent edge devices, and high-speed V2X communication, compute-intensive tasks for autonomous vehicles, such as object detection using camera, LiDAR, and/or radar data, can be partially offloaded to road-side edge servers. However, data privacy becomes a major concern for vehicular edge computing, as sensitive sensor data from vehicles can be observed and used by edge servers. We aim to address the privacy problem by protecting both vehicles’ sensor data and the detection results. In this paper, we present vehicle–edge cooperative deep-learning networks with privacy protection for object-detection tasks, named vePOD for short. In vePOD, we leverage the additive secret sharing theory to develop secure functions for every layer in an object-detection convolutional neural network (CNN). A vehicle’s sensor data is split and encrypted into multiple secret shares, each of which is processed on an edge server by going through the secure layers of a detection network. The detection results can only be obtained by combining the partial results from the participating edge servers. We have developed proof-of-concept detection networks with secure layers: vePOD Faster R-CNN (two-stage detection) and vePOD YOLO (single-stage detection). Experimental results on public datasets show that vePOD does not degrade the accuracy of object detection and, most importantly, it protects data privacy for vehicles. The execution of a vePOD object-detection network with secure layers is orders of magnitude faster than the existing approaches for data privacy. To the best of our knowledge, this is the first work that targets privacy protection in object-detection tasks with vehicle–edge cooperative computing. 
    more » « less