skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2225604

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The conditions associated with tropical cyclones undergoing downshear reformation are explored for the North Atlantic basin from 1998 to 2020. These storms were compared to analog tropical cyclones with similar intensity, vertical wind shear, and maximum potential intensity, but did not undergo downshear reformation. Storm-centered, shear-relative composites were generated using ERA5 and GridSat-B1 data. Downshear reformation predominately occurs for tropical cyclones of tropical storm intensity embedded in moderate vertical wind shear. A comparison between composites suggests that reformed storms are characterized by greater low-level and midtropospheric relative humidity downshear, larger surface latent heat fluxes downshear and left of shear, and larger low-level equivalent potential temperatures and CAPE right of shear. These factors increase thermodynamic favorability, building a reservoir of potential energy and decreasing dry air entrainment, promoting sustained convection downshear, and favoring the development of a new center. Significance StatementThe development of a new low-level circulation center in tropical cyclones that replaces the original center, called downshear reformation, can affect the structure and intensity of storms, representing a challenge in forecasting tropical cyclones. While there have been a handful of case studies on downshear reformation, this study aims to more comprehensively understand the conditions that favor downshear reformation by comparing a large set of North Atlantic tropical cyclones that underwent reformation with a similar set of tropical cyclones that did not undergo reformation. Tropical cyclones that undergo reformation have a moister environment, larger surface evaporation, and higher low-level instability in specific regions that help sustain deep, downshear convection that favors the development of a new center. 
    more » « less