- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Shao, Ming (2)
-
Bahram_Borgheai, Seyyed (1)
-
Dai, Manna (1)
-
Ismail_Hosni, Sarah (1)
-
Kumar, Chetan (1)
-
McLinden, John (1)
-
Rahimi, Neela (1)
-
Shahriari, Yalda (1)
-
Xiao, Gao (1)
-
Zhang, Yu Shrike (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Applications of multimodal neuroimaging techniques, including electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have gained prominence in recent years, and they are widely practiced in brain–computer interface (BCI) and neuro-pathological diagnosis applications. Most existing approaches assume observations are independent and identically distributed (i.i.d.), as shown in the top section of the right figure, yet ignore the difference among subjects. It has been challenging to model subject groups to maintain topological information (e.g., patient graphs) while fusing BCI signals for discriminant feature learning. In this article, we introduce a topology-aware graph-based multimodal fusion (TaGMF) framework to classify amyotrophic lateral sclerosis (ALS) and healthy subjects, illustrated in the lower section of the right image. Our framework is built on graph neural networks (GNNs) but with two unique contributions. First, a novel topology-aware graph (TaG) is proposed to model subject groups by considering: 1) intersubject; 2) intrasubject; and 3) intergroup relations. Second, the learned representation of EEG and fNIRS signals of each subject allows for explorations of different fusion strategies along with the TaGMF optimizations. Our analysis demonstrates the effectiveness of our graph-based fusion approach in multimodal classification by achieving a 22.6% performance improvement over classical approaches.more » « less
-
Dai, Manna; Xiao, Gao; Shao, Ming; Zhang, Yu Shrike (, Biosensors)Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the ability to extract a hidden statistical relationship from the input data. Recently, these two areas have become integrated to achieve synergy for accelerating drug screening. This review provides a brief description of the basic concepts of deep learning used in OoCs and exemplifies the successful use cases for different types of OoCs. These microfluidic chips are of potential to be assembled as highly potent human-on-chips with complex physiological or pathological functions. Finally, we discuss the future supply with perspectives and potential challenges in terms of combining OoCs and deep learning for image processing and automation designs.more » « less
An official website of the United States government
