skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2225950

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 19, 2026
  2. Sparse basis recovery is a classical and important statistical learning problem when the number of model dimensions p is much larger than the number of samples n. However, there has been little work that studies sparse basis recovery in the Federated Learning (FL) setting, where the client data’s differential privacy (DP) must also be simultaneously protected. In particular, the performance guarantees of existing DP-FL algorithms (such as DP-SGD) will degrade significantly when p >> n, and thus, they will fail to learn the true underlying sparse model accurately. In this work, we develop a new differentially private sparse basis recovery algorithm for the FL setting, called SPriFed-OMP. SPriFed-OMP converts OMP (Orthogonal Matching Pursuit) to the FL setting. Further, it combines SMPC (secure multi-party computation) and DP to ensure that only a small amount of noise needs to be added in order to achieve differential privacy. As a result, SPriFed-OMP can efficiently recover the true sparse basis for a linear model with only O(sqrt(p)) samples. We further present an enhanced version of our approach, SPriFed-OMP-GRAD based on gradient privatization, that improves the performance of SPriFed-OMP. Our theoretical analysis and empirical results demonstrate that both SPriFed-OMP and SPriFed-OMP-GRAD terminate in a small number of steps, and they significantly outperform the previous state-of-the-art DP-FL solutions in terms of the accuracy-privacy trade-off. 
    more » « less