Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract High-entropy alloys (HEAs) provide new research avenues for alloy combinations in the periodic table, opening numerous possibilities in novel-alloy applications. However, their electrical characteristics have been relatively underexplored. The challenge in establishing an HEA electrical conductivity model lies in the changes in electronic characteristics caused by lattice distortion and complexity of nanostructures. Here we show a low-frequency electrical conductivity model for the Nb-Mo-Ta-W HEA system. The cocktail effect is found to explain trends in electrical-conductivity changes in HEAs, while the magnitude of the reduction is understood by the calculated plasma frequency, free electron density, and measured relaxation time by terahertz spectroscopy. As a result, the refractory HEA Nb15Mo35Ta15W35thin film exhibits both high hardness and excellent conductivity. This combination of Nb15Mo35Ta15W35makes it suitable for applications in atomic force microscopy probe coating, significantly improving their wear resistance and atomic-scale image resolution.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
A family of TiHfZrNb high-entropy alloys has been considered novel biomaterials for high-performance, small-sized implants. The present work evaluates the role of niobium on passivation kinetics and electrochemical characteristics of passive film on TiHfZrNb alloys formed in Hanks’ simulated body fluid by analyzing electrochemical data with three analytical models. Results confirm that higher niobium content in the alloys reinforces the compactness of the passive film by favoring the dominance of film formation and thickening mechanism over the dissolution mechanism. Higher niobium content enhances the passivation kinetics to rapidly form the first layer, and total surface coverage reinforces the capacitive-resistant behavior of the film by enrichment with niobium oxides and reduces the point defect density and their mobility across the film, lowering pitting initiation susceptibility. With the high resistance to dissolution and rapid repassivation ability in the aggressive Hanks’ simulated body fluid, the TiHfZrNb alloys confirm their great potential as new materials for biomedical implants and warrant further biocompatibility testing.more » « lessFree, publicly-accessible full text available October 1, 2025