Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Graph Neural Networks (GNNs) have been increasingly deployed in a plethora of applications. However, the graph data used for training may contain sensitive personal information of the involved individuals. Once trained, GNNs typically encode such information in their learnable parameters. As a consequence, privacy leakage may happen when the trained GNNs are deployed and exposed to potential attackers. Facing such a threat, machine unlearning for GNNs has become an emerging technique that aims to remove certain personal information from a trained GNN. Among these techniques, certified unlearning stands out, as it provides a solid theoretical guarantee of the information removal effectiveness. Nevertheless, most of the existing certified unlearning methods for GNNs are only designed to handle node and edge unlearning requests. Meanwhile, these approaches are usually tailored for either a specific design of GNN or a specially designed training objective. These disadvantages significantly jeopardize their flexibility. In this paper, we propose a principled framework named IDEA to achieve flexible and certified unlearning for GNNs. Specifically, we first instantiate four types of unlearning requests on graphs, and then we propose an approximation approach to flexibly handle these unlearning requests over diverse GNNs. We further provide theoretical guarantee of the effectiveness for the proposed approach as a certification. Different from existing alternatives, IDEA is not designed for any specific GNNs or optimization objectives to perform certified unlearning, and thus can be easily generalized. Extensive experiments on real-world datasets demonstrate the superiority of IDEA in multiple key perspectives.more » « lessFree, publicly-accessible full text available August 24, 2025
-
Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners, which has been applied in various applications such as social recommendation and financial fraud detection. Inherited from generic Federated Learning (FL), FGL similarly has the data heterogeneity issue where the label distribution may vary significantly for distributed graph data across clients. For instance, a client can have the majority of nodes from a class, while another client may have only a few nodes from the same class. This issue results in divergent local objectives and impairs FGL convergence for node-level tasks, especially for node classification. Moreover, FGL also encounters a unique challenge for the node classification task: the nodes from a minority class in a client are more likely to have biased neighboring information, which prevents FGL from learning expressive node embeddings with Graph Neural Networks (GNNs). To grapple with the challenge, we propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space and aligns them to obtain global structure proxies in the server. Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification. To achieve this, FedSpray trains a global feature-structure encoder and generates unbiased soft targets with structure proxies to regularize local training of GNN models in a personalized way. We conduct extensive experiments over four datasets, and experiment results validate the superiority of FedSpray compared with other baselines. Our code is available at https://github.com/xbfu/FedSpray.more » « lessFree, publicly-accessible full text available August 24, 2025
-
Causality lays the foundation for the trajectory of our world. Causal inference (CI), which aims to infer intrinsic causal relations among variables of interest, has emerged as a crucial research topic. Nevertheless, the lack of observation of important variables (e.g., confounders, mediators, exogenous variables, etc.) severely compromises the reliability of CI methods. The issue may arise from the inherent difficulty in measuring the variables. Additionally, in observational studies where variables are passively recorded, certain covariates might be inadvertently omitted by the experimenter. Depending on the type of unobserved variables and the specific CI task, various consequences can be incurred if these latent variables are carelessly handled, such as biased estimation of causal effects, incomplete understanding of causal mechanisms, lack of individual-level causal consideration, etc. In this survey, we provide a comprehensive review of recent developments in CI with latent variables. We start by discussing traditional CI techniques when variables of interest are assumed to be fully observed. Afterward, under the taxonomy of circumvention and inference-based methods, we provide an in-depth discussion of various CI strategies to handle latent variables, covering the tasks of causal effect estimation, mediation analysis, counterfactual reasoning, and causal discovery. Furthermore, we generalize the discussion to graph data where interference among units may exist. Finally, we offer fresh aspects for further advancement of CI with latent variables, especially new opportunities in the era of large language models (LLMs).more » « lessFree, publicly-accessible full text available August 24, 2025
-
In-context learning (ICL) empowers large language models (LLMs) to tackle new tasks by using a series of training instances as prompts. Since generating the prompts needs to sample from a vast pool of instances and annotate them (e.g., add labels in classification task), existing methods have proposed to select a subset of unlabeled examples for annotation, thus enhancing the quality of prompts and concurrently mitigating annotation costs. However, these methods often require a long time to select instances due to their complexity, hindering their practical viability. To address this limitation, we propose a graph-based selection method, FastGAS, designed to efficiently identify high-quality instances while minimizing computational overhead. Initially, we construct a data similarity graph based on instance similarities. Subsequently, employing a graph partitioning algorithm, we partition the graph into pieces. Within each piece (i.e., subgraph), we adopt a greedy approach to pick the most representative nodes. By aggregating nodes from diverse pieces and annotating the corresponding instances, we identify a set of diverse and representative instances for ICL. Compared to prior approaches, our method not only exhibits superior performance on different tasks but also significantly reduces selection time. In addition, we demonstrate the efficacy of our approach in LLMs of larger sizes.more » « lessFree, publicly-accessible full text available August 11, 2025
-
Large Language Models (LLMs) have shown unprecedented performance in various real-world applications. However, they are known to generate factually inaccurate outputs, a.k.a. the hallucination problem. In recent years, incorporating external knowledge extracted from Knowledge Graphs (KGs) has become a promising strategy to improve the factual accuracy of LLM-generated outputs. Nevertheless, most existing explorations rely on LLMs themselves to perform KG knowledge extraction, which is highly inflexible as LLMs can only provide binary judgment on whether a certain knowledge (e.g., a knowledge path in KG) should be used. In addition, LLMs tend to pick only knowledge with direct semantic relationship with the input text, while potentially useful knowledge with indirect semantics can be ignored. In this work, we propose a principled framework KELP with three stages to handle the above problems. Specifically, KELP is able to achieve finer granularity of flexible knowledge extraction by generating scores for knowledge paths with input texts via latent semantic matching. Meanwhile, knowledge paths with indirect semantic relationships with the input text can also be considered via trained encoding between the selected paths in KG and the input text. Experiments on real-world datasets validate the effectiveness of KELP.more » « lessFree, publicly-accessible full text available August 11, 2025
-
In the field of machine unlearning, certified unlearning has been extensively studied in convex machine learning models due to its high efficiency and strong theoretical guarantees. However, its application to deep neural networks (DNNs), known for their highly nonconvex nature, still poses challenges. To bridge the gap between certified unlearning and DNNs, we propose several simple techniques to extend certified unlearning methods to nonconvex objectives. To reduce the time complexity, we develop an efficient computation method by inverse Hessian approximation without compromising certification guarantees. In addition, we extend our discussion of certification to nonconvergence training and sequential unlearning, considering that real-world users can send unlearning requests at different time points. Extensive experiments on three real-world datasets demonstrate the efficacy of our method and the advantages of certified unlearning in DNNs.more » « lessFree, publicly-accessible full text available July 21, 2025
-
As privacy concerns escalate in the realm of machine learning, data owners now have the option to utilize machine unlearning to remove their data from machine learning models, following recent legislation. To enhance transparency in machine unlearning and avoid potential dishonesty by model providers, various verification strategies have been proposed. These strategies enable data owners to ascertain whether their target data has been effectively unlearned from the model. However, our understanding of the safety issues of machine unlearning verification remains nascent. In this paper, we explore the novel research question of whether model providers can circumvent verification strategies while retaining the information of data supposedly unlearned. Our investigation leads to a pessimistic answer: \textit{the verification of machine unlearning is fragile}. Specifically, we categorize the current verification strategies regarding potential dishonesty among model providers into two types. Subsequently, we introduce two novel adversarial unlearning processes capable of circumventing both types. We validate the efficacy of our methods through theoretical analysis and empirical experiments using real-world datasets. This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.more » « lessFree, publicly-accessible full text available July 21, 2025
-
Few-shot Knowledge Graph (KG) Relational Reasoning aims to predict unseen triplets (i.e., query triplets) for rare relations in KGs, given only several triplets of these relations as references (i.e., support triplets). This task has gained significant traction due to the widespread use of knowledge graphs in various natural language processing applications. Previous approaches have utilized meta-training methods and manually constructed meta-relation sets to tackle this task. Recent efforts have focused on edge-mask-based methods, which exploit the structure of the contextualized graphs of target triplets (i.e., a subgraph containing relevant triplets in the KG). However, existing edge-mask-based methods have limitations in extracting insufficient information from KG and are highly influenced by spurious information in KG. To overcome these challenges, we propose SAFER (Subgraph Adaptation for Few-shot Relational Reasoning), a novel approach that effectively adapts the information in contextualized graphs to various subgraphs generated from support and query triplets to perform the prediction. Specifically, SAFER enables the extraction of more comprehensive information from support triplets while minimizing the impact of spurious information when predicting query triplets. Experimental results on three prevalent datasets demonstrate the superiority of our proposed framework SAFER.more » « lessFree, publicly-accessible full text available June 16, 2025
-
Recently, there has been growing interest in developing the next-generation recommender systems (RSs) based on pretrained large language models (LLMs). However, the semantic gap between natural language and recommendation tasks is still not well addressed, leading to multiple issues such as spuriously correlated user/item descriptors, ineffective language modeling on user/item data, inefficient recommendations via auto-regression, etc. In this paper, we propose CLLM4Rec, the first generative RS that tightly integrates the LLM paradigm and ID paradigm of RSs, aiming to address the above challenges simultaneously. We first extend the vocabulary of pretrained LLMs with user/item ID tokens to faithfully model user/item collaborative and content semantics. Accordingly, a novel soft+hard prompting strategy is proposed to effectively learn user/item collaborative/content token embeddings via language modeling on RS-specific corpora, where each document is split into a prompt consisting of heterogeneous soft (user/item) tokens and hard (vocab) tokens and a main text consisting of homogeneous item tokens or vocab tokens to facilitate stable and effective language modeling. In addition, a novel mutual regularization strategy is introduced to encourage CLLM4Rec to capture recommendation-related information from noisy user/item content. Finally, we propose a novel recommendation-oriented finetuning strategy for CLLM4Rec, where an item prediction head with multinomial likelihood is added to the pretrained CLLM4Rec backbone to predict hold-out items based on soft+hard prompts established from masked user-item interaction history, where recommendations of multiple items can be generated efficiently without hallucination.more » « lessFree, publicly-accessible full text available May 13, 2025
-
Graph-structured data is ubiquitous among a plethora of real-world applications. However, as graph learning algorithms have been increasingly deployed to help decision-making, there has been rising societal concern in the bias these algorithms may exhibit. In certain high-stake decision-making scenarios, the decisions made may be life-changing for the involved individuals. Accordingly, abundant explorations have been made to mitigate the bias for graph learning algorithms in recent years. However, there still lacks a library to collectively consolidate existing debiasing techniques and help practitioners to easily perform bias mitigation for graph learning algorithms. In this paper, we present PyGDebias, an open-source Python library for bias mitigation in graph learning algorithms. As the first comprehensive library of its kind, PyGDebias covers 13 popular debiasing methods under common fairness notions together with 26 commonly used graph datasets. In addition, PyGDebias also comes with comprehensive performance benchmarks and well-documented API designs for both researchers and practitioners. To foster convenient accessibility, PyGDebias is released under a permissive BSD-license together with performance benchmarks, API documentation, and use examples at https://github.com/yushundong/PyGDebias.more » « lessFree, publicly-accessible full text available May 13, 2025