skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2228620

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Low-income households (LIH), exposed to the uncertain modern grid, bear greater energy burdens and face inequitable access to reliable power compared to high-income households (HIH). This paper proposes a two-stage stochastic community-based microgrid planning (CMP) framework to boost energy justice within the system. To reduce the negative impact of income levels, a weighted energy cost model for households within the microgrid (MG) is designed. To address the multisource uncertainty during the operation period, a two-stage stochastic framework is developed. Moreover, to assess the proposed method, the unbalanced IEEE 123 node system is employed and modified as an isolated MG. The analysis reveals the proposed model can achieve a risk-averse solution while economic optimality is guaranteed. Additionally, the designed weighted method improves the LIH’s impact rate to 67.95% and decreases the total planning cost by 22.43%. 
    more » « less
    Free, publicly-accessible full text available August 27, 2026
  2. Low-income households (LIH), exposed to the uncertain modern grid, bear greater energy burdens and face inequitable access to reliable power compared to high-income households (HIH). This paper proposes a two-stage stochastic community-based microgrid planning (CMP) framework to boost energy justice within the system. To reduce the negative impact of income levels, a weighted energy cost model for households within the microgrid (MG) is designed. To address the multisource uncertainty during the operation period, a two-stage stochastic framework is developed. Moreover, to assess the proposed method, the unbalanced IEEE 123 node system is employed and modified as an isolated MG. The analysis reveals the proposed model can achieve a risk-averse solution while economic optimality is guaranteed. Additionally, the designed weighted method improves the LIH’s impact rate to 67.95% and decreases the total planning cost by 22.43%. 
    more » « less
    Free, publicly-accessible full text available July 27, 2026