skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2229680

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Development of reliable germplasm repositories is critical for preservation of genetic resources of aquatic species, which are widely utilized to support biomedical innovation by providing a foundational source for naturally occurring variation and development of new variants through genetic manipulations. A significant barrier in repository development is the lack of cryopreservation capability and reproducibility across the research community, posing great risks of losing advances developed from billions of dollars of research investment. The emergence of open scientific hardware has fueled a new movement across biomedical research communities. With the increasing accessibility of consumer‐level fabrication technologies, such as three‐dimensional printers, open hardware devices can be custom designed, and design files distributed to community members for enhancing rigor, reproducibility, and standardization. The overall goal of this review is to explore pathways to create open‐hardware ecosystems among the communities using aquatic model resources for biomedical research. To gain feedback and insights from community members, an interactive workshop focusing on open‐hardware applications in germplasm repository development was held at the 2022 Aquatic Models for Human Disease Conference, Woods Hole, Massachusetts. This work integrates conceptual strategies with practical insights derived from workshop interactions using examples of germplasm repository development. These insights can be generalized for establishment of open‐hardware ecosystems for a broad biomedical research community. The specific objectives were to: (1) introduce an open‐hardware ecosystem concept to support biomedical research; (2) explore pathways toward open‐hardware ecosystems through four major areas, and (3) identify opportunities and future directions. 
    more » « less
  2. The axolotl (Ambystoma mexicanum) draws great attention around the world for its importance as a biomedical research model, but housing and maintaining live animals is increasingly expensive and risky as new transgenic lines are developed. The goal of this work was to develop an initial practical pathway for sperm cryopreservation to support germplasm repository development. The present study assembled a pathway through the investigation of axolotl sperm collection by stripping, refrigerated storage in various osmotic pressures, cryopreservation in various cryoprotectants, and in vitro fertilization using thawed sperm. By the stripping of males, 25–800 µL of sperm fluid was collected at concentrations of 1.6 × 106 to 8.9 × 107 sperm/mL. Sperm remained motile for 5 d in Hanks’ Balanced Salt Solution (HBSS) at osmolalities of 100–600 mOsm/kg. Sperm cryopreserved in 0.25 mL French straws at 20 °C/min in a final concentration of 5% DMFA plus 200 mM trehalose and thawed at 25 °C for 15 s resulted in 52 ± 12% total post-thaw motility. In six in vitro fertilization trials, 20% of eggs tested with thawed sperm continued to develop to stage 7–8 after 24 h, and a third of those embryos (58) hatched. This work is the first report of successful production of axolotl offspring with cryopreserved sperm, providing a general framework for pathway development to establish Ambystoma germplasm repositories for future research and applications. 
    more » « less