Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Most commercial systems for ultraviolet-visible (UV–VIS), Fourier-transform infrared, circular dichroism (CD), and fluorescence spectroscopies are designed for measurement of liquid samples. Moreover, adapters enabling the measurement of solid samples are expensive or unavailable for most commercial instruments. Consequently, there is a significant need for solid sample adapters that enable measurement of both liquid and solid samples with a single system. Here, we report two versions of a solid sample adapter cuvette that can be used in most commercial spectroscopy instruments designed for transmission measurement of liquid samples. One version is designed for techniques that do not require changing the sample orientation, and the other allows easy sample rotation. We successfully fabricated these cuvettes by 3D printing with both fused deposition modeling and stereolithography and demonstrated how they enable us to study the optical properties of macroscopic films of aligned carbon nanotubes by performing UV–VIS and CD spectroscopy measurements with the cuvettes. These 3D printed cuvettes and their implementation will help enable a wide range of experiments at a low cost.more » « less
-
Abstract The rapid development in nanotechnology has necessitated accurate and efficient assembly strategies for nanomaterials. Monolayer assembly of nanomaterials (MAN) represents a challenging and important architecture to manufacture and is critical in understanding interactions among nanomaterials, solvents, and substrates. MAN enables highly tunable performance in electronic and photonic devices. This review summarizes the recent progress on the methods to achieve MAN and discusses important control factors. Moreover, the importance of MAN is elaborated by a broad range of applications in electronics and photonics. In the end, the opportunities as well as challenges in manufacturing and new applications are outlooked.more » « lessFree, publicly-accessible full text available May 9, 2025
-
Abstract Carbon nanotubes (CNTs) possess extremely anisotropic electronic, thermal, and optical properties owing to their 1D character. While their linear optical properties have been extensively studied, nonlinear optical processes, such as harmonic generation for frequency conversion, remain largely unexplored in CNTs, particularly in macroscopic CNT assemblies. In this work, macroscopic films of aligned and type‐separated (semiconducting and metallic) CNTs are synthesized and polarization‐dependent third‐harmonic generation (THG) from the films with fundamental wavelengths ranging from 1.5 to 2.5 µm is studied. Both films exhibited strongly wavelength‐dependent, intense THG signals, enhanced through exciton resonances, and third‐order nonlinear optical susceptibilities of 2.50 × 10−19 m2 V−2(semiconducting CNTs) and 1.23 × 10−19 m2 V−2(metallic CNTs), respectively are found, for 1.8 µm excitation. Further, through systematic polarization‐dependent THG measurements, the values of all elements of the susceptibility tensor are determined, verifying the macroscopically 1D nature of the films. Finally, polarized THG imaging is performed to demonstrate the nonlinear anisotropy in the large‐size CNT film with good alignment. These findings promise applications of aligned CNT films in mid‐infrared frequency conversion, nonlinear optical switching, polarized pulsed lasers, polarized long‐wave detection, and high‐performance anisotropic nonlinear photonic devices.more » « less
-
Free, publicly-accessible full text available March 1, 2026
-
All‐optical and fully reconfigurable transmissive diffractive optical neural network (DONN) architectures emerge as high‐throughput and energy‐efficient machine learning (ML) hardware accelerators in broad applications. However, current device and system implementations have limited performance. In this work, a novel transmissive diffractive device architecture, a digitized phase‐change material (PCM) heterostack, which consists of multiple nonvolatile PCM layers with different thicknesses, is demonstrated. Through this architecture, the advantages of PCM electrical and optical properties can be leveraged and challenges associated with multilevel operations in a single PCM layer can be mitigated. Through proof‐of‐concept experiments, the electrical tuning of one PCM layer is demonstrated in a transmissive spatial light modulation device, and thermal analysis guides the design of multilayer devices and DONN systems to avoid thermal cross talk if individual heterostacks are assembled into an array. Further, a heterostack containing three PCM layers is designed based on experimental results to produce a large‐phase modulation range and uniform coverage, and the ML performance of DONN systems with the designed heterostack is evaluated. The developed device architecture is practically feasible and scalable for future energy‐efficient, fast‐reconfigured, and compact transmissive DONN systems.more » « lessFree, publicly-accessible full text available December 15, 2025
-
Free, publicly-accessible full text available June 18, 2025
-
Thermoelectric active cooling uses nontraditional thermoelectric materials with high thermal conductivity, high thermoelectric power factor, and relatively low figure of merit (ZT) to transfer large heat flows from a hot object to a cold heat sink. However, prior studies have not considered the influence of external thermal resistances associated with the heat sinks or contacts, making it difficult to design active cooling thermal systems or compare the use of low-ZT and high-ZT materials. Here, we perform a non-dimensionalized analysis of thermoelectric active cooling under forced heat flow boundary conditions, including arbitrary external thermal resistances. We identify the optimal electrical currents to minimize the heat source temperature and find the crossover heat flows at which low-ZT active cooling leads to lower source temperatures than high-ZT and even ZT→+∞ thermoelectric refrigeration. These optimal parameters are insensitive to the thermal resistance between the heat source and thermoelectric materials, but depend strongly on the heat sink thermal resistance. Finally, we map the boundaries where active cooling yields lower source temperatures than thermoelectric refrigeration. For currently considered active cooling materials, active cooling with ZT < 0.1 is advantageous compared to ZT→+∞ refrigeration for dimensionless heat sink thermal conductances larger than 15 and dimensionless source powers between 1 and 100. Thus, our results motivate further investigation of system-level thermoelectric active cooling for applications in electronics thermal management.more » « less
-
Abstract Emerging photo-induced excitonic processes in transition metal dichalcogenide (TMD) heterobilayers, e.g., interplay of intra- and inter-layer excitons and conversion of excitons to trions, allow new opportunities for ultrathin hybrid photonic devices. However, with the associated large degree of spatial heterogeneity, understanding and controlling their complex competing interactions in TMD heterobilayers at the nanoscale remains a challenge. Here, we present an all-round dynamic control of interlayer-excitons and -trions in a WSe 2 /Mo 0.5 W 0.5 Se 2 heterobilayer using multifunctional tip-enhanced photoluminescence (TEPL) spectroscopy with <20 nm spatial resolution. Specifically, we demonstrate the bandgap tunable interlayer excitons and the dynamic interconversion between interlayer-trions and -excitons, through the combinational tip-induced engineering of GPa-scale pressure and plasmonic hot electron injection, with simultaneous spectroscopic TEPL measurements. This unique nano-opto-electro-mechanical control approach provides new strategies for developing versatile nano-excitonic/trionic devices using TMD heterobilayers.more » « less