Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Free, publicly-accessible full text available December 10, 2025
- 
            Deep learning-based code generation (DL-CG) applications have shown great potential for assisting developers in programming with human-competitive accuracy. However, lacking transparency in such applications due to the uninterpretable nature of deep learning models makes the automatically generated programs untrustworthy. In this paper, we develop DeciX, a first explanation method dedicated to DL-CG applications. DeciX is motivated by observing two unique properties of DL-CG applications: output-to-output dependencies and irrelevant value and semantic space. These properties violate the fundamental assumptions made in existing explainable DL techniques and thus cause applying existing techniques to DL-CG applications rather pessimistic and even incorrect. DeciX addresses these two limitations by constructing a causal inference dependency graph, containing a novel method leveraging causal inference that can accurately quantify the contribution of each dependency edge in the graph to the end prediction result. Proved by extensive experiments assessing popular, widely-used DL-CG applications and several baseline methods, DeciX is able to achieve significantly better performance compared to state-of-the-art in terms of several critical performance metrics, including correctness, succinctness, stability, and overhead. Furthermore, DeciX can be applied to practical scenarios since it does not require any knowledge of the DL-CG model under explanation. We have also conducted case studies that demonstrate the applicability of DeciX in practice.more » « less
- 
            Pellizzoni, Rodolfo (Ed.)Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of GPU-level preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device driver level and enables preemption of GPU execution based on task priorities by simply adding one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and response time. The results highlight significant improvements over prior work as well as the default scheduling approach, with up to 40% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available