skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2232138

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Super‐coarse dust particles (diameters >10 μm) are evidenced to be more abundant in the atmosphere than model estimates and contribute significantly to the dust climate impacts. Since super‐coarse dust accounts for less dust extinction in the visible‐to‐near‐infrared (VIS‐NIR) than in the thermal infrared (TIR) spectral regime, they are suspected to be underestimated by remote sensing instruments operates only in VIS‐NIR, including Aerosol Robotic Networks (AERONET), a widely used data set for dust model validation. In this study, we perform a radiative closure assessment using the AERONET‐retrieved size distribution in comparison with the collocated Atmospheric Infrared Sounder (AIRS) TIR observations with comprehensive uncertainty analysis. The consistently warm bias in the comparisons suggests a potential underestimation of super‐coarse dust in the AERONET retrievals due to the limited VIS‐NIR sensitivity. An extra super‐coarse mode included in the AERONET‐retrieved size distribution helps improve the TIR closure without deteriorating the retrieval accuracy in the VIS‐NIR. 
    more » « less
  2. Abstract. The lidar backscattering properties of Asian dust particles, namely the lidar ratio (S) and backscattering depolarization ratio (δ), were studied using a discrete dipole approximation (DDA) model. The three-dimensional morphology of the dust particles was reconstructed in fine detail using the focused ion beam (FIB) tomography technique. An index based on the symmetry of the scattering matrix was developed to assess the convergence of random orientation computation using DDA. Both S and δ exhibit an asymptotic trend with dust particle size: the S initially decreases, while the δ increases with size, before both approach their asymptotic values. The lidar properties were found to have statistically insignificant dependence on effective sphericity. The presence of strongly absorbing minerals, such as magnetite, can greatly reduce the dust's single-scattering albedo and δ. Utilizing the robust asymptotic trend behavior, two parameterization schemes were developed: one to estimate the δ of a single dust particle given its size and the other to estimate the δ of dust particles with a lognormal particle size distribution given the effective radius. The parameterization scheme was compared with results based on the TAMUdust2020 database, showing hexahedrons to reasonably represent realistic geometries with similar physical properties. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  3. Airborne mineral dust significantly influences Earth’s climate through perturbing Earth’s radiation budget, modulating cloud formation and microphysical properties, and fertilizing the biosphere. Recent field campaigns have revealed substantially more coarse-mode dust particles in the atmosphere than previously recognized, yet current satellite retrievals and climate models inadequately represent these particles. This study presents a novel retrieval algorithm for dust aerosol optical depth at 10 μm (AOD10μm) and effective diameter (Deff) using Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR) observations over global land and ocean. Building upon the previous synergistic approach for MODIS and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), we improve the retrieval from CALIOP-track-limited coverage to full-swath MODIS observations at 10-km resolution over both ocean and land surfaces. The retrieval improvements include: (1) application of climatological CALIOP dust vertical profiles (2007–2017) to constrain dust vertical distribution for off-CALIOP-track pixels; (2) the improved optimization method to effectively handle nonmonotonic cost functions arising from temperature inversions within the Saharan Air Layer; and (3) extension to land surfaces through incorporation of MODIS-retrieved surface emissivity and ERA5 reanalysis data. Validation against coarse-mode AOD from global AERONET (N = 4703) and MAN (N = 1673) observations yields R = 0.82 and 0.85 for AOD10μm, with retrieval uncertainty characterized as ε = 15 % × AOD + 0.04. The retrieved Deff demonstrates excellent agreement with in-situ measurements collected from 24 field campaigns around the globe (R = 0.84, MBE = 0.23 μm, RMSE = 0.73 μm), capturing the particle size variation from near-source regions (Deff = 7–8 μm) to long-range transport (Deff = 3–5 μm). Case studies of dust events over the Namibian coast and trans-Atlantic corridor demonstrate the retrieval’s capability to resolve episodic dust properties and size-dependent deposition during transport. This improved retrieval addresses the critical observational gap for coarse and super-coarse dust particles (D > 5 μm), providing essential constraints for dust life cycle studies and climate model evaluation. 
    more » « less
    Free, publicly-accessible full text available October 17, 2026
  4. Abstract. In this study, we developed a novel algorithm based on the collocatedModerate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR)observations and dust vertical profiles from the Cloud–Aerosol Lidar withOrthogonal Polarization (CALIOP) to simultaneously retrieve dust aerosoloptical depth at 10 µm (DAOD10 µm) and the coarse-mode dusteffective diameter (Deff) over global oceans. The accuracy of theDeff retrieval is assessed by comparing the dust lognormal volumeparticle size distribution (PSD) corresponding to retrieved Deff withthe in situ-measured dust PSDs from the AERosol Properties – Dust(AER-D), Saharan Mineral Dust Experiment (SAMUM-2), and Saharan Aerosol Long-Range Transport and Aerosol–Cloud-InteractionExperiment (SALTRACE) fieldcampaigns through case studies. The new DAOD10 µm retrievals wereevaluated first through comparisons with the collocated DAOD10.6 µmretrieved from the combined Imaging Infrared Radiometer (IIR) and CALIOPobservations from our previous study (Zheng et al., 2022). The pixel-to-pixelcomparison of the two DAOD retrievals indicates a good agreement(R∼0.7) and a significant reduction in (∼50 %) retrieval uncertainties largely thanks to the better constraint ondust size. In a climatological comparison, the seasonal and regional(2∘×5∘) mean DAOD10 µm retrievals basedon our combined MODIS and CALIOP method are in good agreement with the twoindependent Infrared Atmospheric Sounding Interferometer (IASI) productsover three dust transport regions (i.e., North Atlantic (NA; R=0.9),Indian Ocean (IO; R=0.8) and North Pacific (NP; R=0.7)). Using the new retrievals from 2013 to 2017, we performed a climatologicalanalysis of coarse-mode dust Deff over global oceans. We found thatdust Deff over IO and NP is up to 20 % smaller than that over NA.Over NA in summer, we found a ∼50 % reduction in the numberof retrievals with Deff>5 µm from 15 to35∘ W and a stable trend of Deff average at 4.4 µm from35∘ W throughout the Caribbean Sea (90∘ W). Over NP inspring, only ∼5 % of retrieved pixels with Deff>5 µm are found from 150 to 180∘ E, whilethe mean Deff remains stable at 4.0 µm throughout eastern NP. To the best of our knowledge, this study is the first to retrieve both DAOD andcoarse-mode dust particle size over global oceans for multiple years. Thisretrieval dataset provides insightful information for evaluating dustlongwave radiative effects and coarse-mode dust particle size in models. 
    more » « less