skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2232911

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 4, 2026
  2. Free, publicly-accessible full text available May 12, 2026
  3. IEEE/IFIP (Ed.)
    We investigate the feasibility of targeted privacy attacks using only information available in physical channels of LTE mobile networks and propose three privacy attacks to demonstrate this feasibility: mobile-app fingerprinting attack, history attack, and correlation attack. These attacks can reveal the geolocation of targeted mobile devices, the victim's app usage patterns, and even the relationship between two users within the same LTE network cell. An attacker also may launch these attacks stealthily by capturing radio signals transmitted over the air, using only a passive sniffer as equipment. To ensure the impact of these attacks on mobile users' privacy, we perform evaluations in both laboratory and real-world settings, demonstrating their practicality and dependability. Furthermore, we argue that these attacks can target not only 4G/LTE but also the evolving 5G standards. 
    more » « less
  4. Mobile Augmented Reality (MAR) is a portable, powerful, and suitable technology that integrates digital content, e.g., 3D virtual objects, into the physical world, which not only has been implemented for multiple intents such as shopping, entertainment, gaming, etc., but it is also expected to grow at a tremendous rate in the upcoming years. Unfortunately, the applications that implement MAR, hereby referred to as MAR-Apps, bear security issues, which have been imaged in worldwide incidents such as robberies, which has led authorities to ban MAR-Apps at specific locations. Existing problems with MAR-Apps can be classified into three categories: first, Space Invasion, which implies the intrusive modification through MAR of sensitive spaces, e.g., hospitals, memorials, etc. Second, Space Affectation, which involves the degradation of users' experience via interaction with undesirable MAR or malicious entities. Finally, MAR-Apps mishandling sensitive data leads to Privacy Leaks. To alleviate these concerns, we present an approach for Policy-Governed MAR-Apps, which allows end-users to fully control under what circumstances, e.g., their presence inside a given sensitive space, digital content may be displayed by MAR-Apps. Through SpaceMediator, a proof-of-concept MAR-App that imitates the well-known and successful MAR-App Pokemon GO, we evaluated our approach through a user study with 40 participants, who recognized and prevented the issues just described with success rates as high as 92.50%. Furthermore, there is an enriched interest in Policy-Governed MAR-Apps as 87.50% of participants agreed with it, and 82.50% would use it to implement content-based restrictions in MAR-Apps These promising results encourage the adoption of our solution in future MAR-Apps. 
    more » « less