skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2232967

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A cornerstone of materials science is that material properties are determined by their microstructure. While the community has already developed a wide variety of approaches to describe microstructure, most of these are tailored to specific material systems or classes. This work proposes a way to quantitatively measure the similarity of microstructures based on the geometry of the grain boundary network, a feature which is fundamental to and characteristic of all polycrystalline materials. Specifically, a distance on all single-phase polycrystalline microstructures is proposed such that two microstructures that are close with regard to the distance have grain boundary networks that are statistically similar in all geometric respects below a user-specified length scale. Given a pair of micrographs, the distance is approximated by sampling windows from the micrographs, defining a distance between pairs of windows, and finding a window matching that minimizes the sum of the pairwise window distances. The approach is used to compare a variety of synthetic microstructures and to develop a procedure to query a proof-of-concept database suitable for general single-phase polycrystalline microstructures. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026