skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2233420

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Traditional feedback analyses, which assume that individual climate feedback mechanisms act independently and add linearly, suggest that clouds do not contribute to Arctic amplification. However, feedback locking experiments, in which the cloud feedback is disabled, suggest that clouds, particularly outside of the Arctic, do contribute to Arctic amplification. Here, we reconcile these two perspectives by introducing a framework that quantifies the interactions between radiative feedbacks, radiative forcing, ocean heat uptake, and atmospheric heat transport. We show that including the cloud feedback in a comprehensive climate model can result in Arctic amplification because of interactions with other radiative feedbacks. The surface temperature change associated with including the cloud feedback is amplified in the Arctic by the surface-albedo, Planck, and lapse-rate feedbacks. A moist energy balance model with a locked cloud feedback exhibits similar behavior as the comprehensive climate model with a disabled cloud feedback and further indicates that the mid-latitude cloud feedback contributes to Arctic amplification via feedback interactions. Feedback locking in the moist energy balance model also suggests that the mid-latitude cloud feedback contributes substantially to the intermodel spread in Arctic amplification across comprehensive climate models. These results imply that constraining the mid-latitude cloud feedback will greatly reduce the intermodel spread in Arctic amplification. Furthermore, these results highlight a previously unrecognized non-local pathway for Arctic amplification. 
    more » « less
  2. Abstract In contrast to surface greenhouse warming, surface greenhouse cooling has been less explored, especially on multi-century timescales. Here, we assess the processes controlling the pacing and magnitude of the multi-century surface temperature response to instantaneously doubling and halving atmospheric carbon dioxide concentrations in a modern global coupled climate model. Over the first decades, surface greenhouse warming is larger and faster than surface greenhouse cooling both globally and at high northern latitudes (45–90° N). Yet, this initial multi-decadal response difference does not persist. After year 150, additional surface warming is negligible, but surface cooling and sea ice expansion continues. Notably, the equilibration timescale for high northern latitude surface cooling (∼437 years) is more than double the equivalent timescale for warming. The high northern latitude responses differ most at the sea ice edge. Under greenhouse cooling, the sea ice edge slowly creeps southward into the mid-latitude oceans amplified by positive lapse rate and surface albedo feedbacks. While greenhouse warming and sea ice loss at high northern latitudes occurs on multi-decadal timescales, greenhouse cooling and sea ice expansion occurs on multi-century timescales. Overall, this work shows the importance of multi-century timescales and sea ice processes for understanding high northern latitude climate responses. 
    more » « less