Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ice wedges, which are ubiquitous in permafrost areas, play a significant role in the evolution of permafrost landscapes, influencing the topography and hydrology of these regions. In this paper, we combine a detailed multi-generational, interdisciplinary, and international literature review along with our own field experiences to explore the development of low-centered ice-wedge polygons and their orthogonal networks. Low-centered polygons, a type of ice-wedge polygonal ground characterized by elevated rims and lowered wet central basins, are critical indicators of permafrost conditions. The formation of these features has been subject to numerous inconsistencies and debates since their initial description in the 1800s. The development of elevated rims is attributed to different processes, such as soil bulging due to ice-wedge growth, differential frost heave, and the accumulation of vegetation and peat. The transition of low-centered polygons to flat-centered, driven by processes like peat accumulation, aggradational ice formation, and frost heave in polygon centers, has been generally overlooked. Low-centered polygons occur in deltas, on floodplains, and in drained-lake basins. There, they are often arranged in orthogonal networks that comprise a complex system. The prevailing explanation of their formation does not match with several field studies that practically remain unnoticed or ignored. By analyzing controversial subjects, such as the degradational or aggradational nature of low-centered polygons and the formation of orthogonal ice-wedge networks, this paper aims to clarify misconceptions and present a cohesive overview of lowland terrain ice-wedge dynamics. The findings emphasize the critical role of ice wedges in shaping Arctic permafrost landscapes and their vulnerability to ongoing climatic and landscape changes.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Much of the Arctic tundra is underlain by a network of ice wedges that formed during millennia of repeated frost cracking on cold winter days and later infilling of snowmelt water. Growing ice wedges push the soil upwards, forming connected ridges on the ground surface and the ubiquitous ice-wedge polygon tundra. Melting of the top of the ice wedge causes the ground surface to collapse with the rims transforming into snow- and water-collecting troughs — a phenomenon observed at multiple sites across the Arctic tundra in a decade or less. Continued melt establishes a new drainage network only a metre or two wide and less than a half-metre deep, where a doubling of runoff and reduced surface water storage is possible without changes in precipitation. Across the Arctic, lakes are disappearing, while precipitation and river runoff are increasing. So far, the sub-metre microtopographical changes have not entered the scientific analyses encompassing regional and pan-Arctic hydrology. The data and technology are now here to quantify the network of ice wedges across large regions and, though individually small, the ice wedges add up to large numbers. What at first may appear as contradicting hydrological change (for example, shrinking lakes despite increasing precipitation) could be explained by a sudden evolution of the stream network where the new channels are narrow but bountiful: the capillaries of the Arctic tundra hydrological system.more » « less
-
Ice-wedge polygon (IWP) is a landform found in landscapes underlain by permafrost. IWPs form due to the development of ice wedges, where each IWP is bounded by ice wedges. Ice wedges form due to repeated cracking of the soil during winter and by snowmelt water infiltrating into the cracks and freezing. Repeated over thousands of years, the process results in ice wedges several 10s of feet deep. The melting of the top of the ice wedge results in ground subsidence and depending how extensive the thaw is across the landscape, new ponds or lateral drainage channels form. This data collection supported an assessment of the length of the ice wedge network in the Barnard River watershed (10,540 km2), Banks Island, Canada. The data collection is derived from the pan-Arctic map of ice-wedge polygons (Witharana et al. 2023, Ice-wedge polygon detection in satellite imagery from pan-Arctic regions, Permafrost Discovery Gateway, 2001-2021. Arctic Data Center. doi:10.18739/A2KW57K57), which used Maxar satellite imagery from 2010-2020 for Banks Island. Two types of datasets are included: (1) Polyline shapefile of mapped ice wedge centerlines. This dataset was produced with an approach adopted from Ulrich, Mathias, et al. "Quantifying wedge‐ice volumes in Yedoma and thermokarst basin deposits." Permafrost and Periglacial Processes 25.3 (2014): 151-161. A buffer that represents widths at the top of ice wedges is created around each IWP. A buffer width of 5 meters was chosen, since this allowed buffers of adjacent polygons to overlap. These buffers are then skeletonized in order to trace their centerlines, which ultimately represents the network of ice-wedges that form the IWPs in a landscape. (2) Polygon shapefile of IWP coverage (as percentage of land cover within 1 kilometer (km) x 1 km rectangular grid cells) across the 10,540 km2 Bernard River Watershed, Banks Island, Canada. Code for ice-wedge centerline extraction can be found at https://github.com/PermafrostDiscoveryGateway/IW-Network-Extraction. This data collection accompanies the manuscript published in Nature Water (Liljedahl, A.K., Witharana, C., and Manos, E., 2024. The Capillaries of the Arctic Tundra. Nature Water, doi:10.1038/s44221-024-00276-9) and the geospatial data is available to view in the Permafrost Discovery Gateway.more » « less
An official website of the United States government
