skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2235233

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We establish dispersive estimates and local decay estimates for the time evolution of non-self-adjoint matrix Schrödinger operators with threshold resonances in one space dimension. In particular, we show that the decay rates in the weighted setting are the same as in the regular case after subtracting a finite rank operator corresponding to the threshold resonances. Such matrix Schrödinger operators naturally arise from linearizing a focusing nonlinear Schrödinger equation around a solitary wave. It is known that the linearized operator for the 1D focusing cubic NLS equation exhibits a threshold resonance. We also include an observation of a favorable structure in the quadratic nonlinearity of the evolution equation for perturbations of solitary waves of the 1D focusing cubic NLS equation. 
    more » « less