- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Davey, Blair (3)
-
Isralowitz, Joshua (1)
-
Smit Vega Garcia, Mariana (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper continues the study initiated in Davey (Arch Ration Mech Anal 228:159–196, 2018), where a high-dimensional limiting technique was developed and used to prove certain parabolic theorems from their elliptic counterparts. In this article, we extend these ideas to the variable-coefficient setting. This generalized technique is demonstrated through new proofs of three important theorems for variable-coefficient heat operators, one of which establishes a result that is, to the best of our knowledge, also new. Specifically, we give new proofs of$$L^2 \rightarrow L^2$$ Carleman estimates and the monotonicity of Almgren-type frequency functions, and we prove a new monotonicity of Alt–Caffarelli–Friedman-type functions. The proofs in this article rely only on their related elliptic theorems and a limiting argument. That is, each parabolic theorem is proved by taking a high-dimensional limit of a related elliptic result.more » « less
-
Davey, Blair (, Vietnam Journal of Mathematics)
-
Isralowitz, Joshua; Davey, Blair (, Mathematische Annalen)
An official website of the United States government
