skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2236491

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper continues the study initiated in Davey (Arch Ration Mech Anal 228:159–196, 2018), where a high-dimensional limiting technique was developed and used to prove certain parabolic theorems from their elliptic counterparts. In this article, we extend these ideas to the variable-coefficient setting. This generalized technique is demonstrated through new proofs of three important theorems for variable-coefficient heat operators, one of which establishes a result that is, to the best of our knowledge, also new. Specifically, we give new proofs of$$L^2 \rightarrow L^2$$ L 2 L 2 Carleman estimates and the monotonicity of Almgren-type frequency functions, and we prove a new monotonicity of Alt–Caffarelli–Friedman-type functions. The proofs in this article rely only on their related elliptic theorems and a limiting argument. That is, each parabolic theorem is proved by taking a high-dimensional limit of a related elliptic result. 
    more » « less