skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2236905

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ceramic processing through the combined use of pressure and water offers a promising approach to achieve accelerated mass transport between ceramic particles at reduced temperatures, providing a sustainable and low‐temperature method for ceramic synthesis and three‐dimensional printing. While previous studies have explored the roles of pressure and water in the fusion and densification of ceramic particles, the underlying mechanisms, especially for micro‐sized ceramic particles, are still debated. This paper aims to propose a potential mechanism for the fusion and densification of micro‐sized ceramic particles under the effect of pressure and water. Using a multi‐phase level‐set simulation model, our results suggest that stress‐assisted fracture and dissolution of interparticle contact points can be key factors driving the densification of micro‐sized ceramic particles in the presence of pressure and water. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026