skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2236983

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over a local ring R R , the theory of cohomological support varieties attaches to any bounded complex M M of finitely generated R R -modules an algebraic variety V R ( M ) {\mathrm {V}}_R(M) that encodes homological properties of M M . We give lower bounds for the dimension of V R ( M ) {\mathrm {V}}_R(M) in terms of classical invariants of R R . In particular, when R R is Cohen–Macaulay and not complete intersection we find that there are always varieties that cannot be realized as the cohomological support of any complex. When M M has finite projective dimension, we also give an upper bound for dim ⁡<#comment/> V R ( M ) \dim {\mathrm {V}}_R(M) in terms of the dimension of the radical of the homotopy Lie algebra of R R . This leads to an improvement of a bound due to Avramov, Buchweitz, Iyengar, and Miller on the Loewy lengths of finite free complexes, and it recovers a result of Avramov and Halperin on the homotopy Lie algebra of R R . Finally, we completely classify the varieties that can occur as the cohomological support of a complex over a Golod ring. 
    more » « less